Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(11): e202319246, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38191762

ABSTRACT

IR spectroelectrochemistry (EC-IR) is a cutting-edge operando method for exploring electrochemical reaction mechanisms. However, detection of interfacial molecules is challenged by the limited sensitivity of existing EC-IR platforms due to the lack of high-enhancement substrates. Here, we propose an innovative plasmon-enhanced infrared spectroelectrochemistry (EC-PEIRS) platform to overcome this sensitivity limitation. Plasmonic antennae with ultrahigh IR signal enhancement are electrically connected via monolayer graphene while preserving optical path integrity, serving as both the electrode and IR substrate. The [Fe(CN)6 ]3- /[Fe(CN)6 ]4- redox reaction and electrochemical CO2 reduction reaction (CO2 RR) are investigated on the EC-PEIRS platform with a remarkable signal enhancement. Notably, the enhanced IR signals enable a reconstruction of the electrochemical curve of the redox reactions and unveil the CO2 RR mechanism. This study presents a promising technique for boosting the in-depth understanding of interfacial events across diverse applications.

2.
ACS Appl Mater Interfaces ; 15(36): 43038-43047, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37655460

ABSTRACT

Although the thermochromic smart windows with adjustable sunlight transmittance to achieve energy savings are gradually improving, they are still difficult to use, limited by their unreasonable thermal response temperature, slow switching time, and poor durability. Here, we demonstrate a dual-function hybrid thermoresponsive smart window device (CPH) by trapping the phase-change polyHEA-HDA polymer (HEA = hydroxyethyl acrylate, HDA = hexadecyl acrylate) and polydopamine@CsxWO3 (PDA@CWO) core-shell nanoparticles within glasses. The introduced PDA@CWO nanoparticles substantially increase the energy transformation efficiency of solar energy to heat due to their outstanding photothermal conversion. When the temperature increases above the phase-transition temperature of polyHEA-HDA polymer, the copolymer components in the composite material undergo a reversible crystalline-amorphous transition, which enables the transformation of the whole smart window from transparency to opaque in a low ambient temperature. The light transmittance in the solar range can be dynamically modulated between 54.8 and 22.9% with a low ambient temperature while maintaining acceptable visible light transparency and effective UV shielding. A model house testing proves an indoor temperature cooling of 7.1 °C. This study offers a new approach to designing an energy-saving smart window system with multifunctionality.

3.
Opt Express ; 30(19): 34787-34796, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36242483

ABSTRACT

Achieving ultra-broadband and completely modulated absorption enhancement of monolayer graphene in near-infrared region is practically important to design graphene-based optoelectronic devices, however, which remains a challenge. In this work, by spectrally designing multiple magnetic plasmon resonance modes in metamaterials to be adjacent to each other, near-infrared light absorption in monolayer graphene is greatly improved to have an averaged absorption efficiency exceeding 50% in a very broad absorption bandwidth of about 800 nm. Moreover, by exerting an external bias voltage on graphene to change Fermi energy of graphene, the ultra-broadband absorption enhancement of monolayer graphene exhibits an excellent tunability, which has a nearly 100% modulation depth and an electrical switching property. This work is promising for applications in near-infrared photodetectors, amplitude modulators of electromagnetic waves, etc.

4.
Nanomaterials (Basel) ; 12(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35055234

ABSTRACT

In this study, we investigate a physical mechanism to improve the light absorption efficiency of graphene monolayer from the universal value of 2.3% to about 30% in the visible and near-infrared wavelength range. The physical mechanism is based on the diffraction coupling of surface plasmon polariton resonances in the periodic array of metal nanoparticles. Through the physical mechanism, the electric fields on the surface of graphene monolayer are considerably enhanced. Therefore, the light absorption efficiency of graphene monolayer is greatly improved. To further confirm the physical mechanism, we use an interaction model of double oscillators to explain the positions of the absorption peaks for different array periods. Furthermore, we discuss in detail the emerging conditions of the diffraction coupling of surface plasmon polariton resonances. The results will be beneficial for the design of graphene-based photoelectric devices.

5.
Nanomaterials (Basel) ; 11(12)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34947710

ABSTRACT

We theoretically demonstrate an approach to generate the double narrow Fano resonances via diffraction coupling of magnetic plasmon (MP) resonances by embedding 3D metamaterials composed of vertical Au U-shaped split-ring resonators (VSRRs) array into a dielectric substrate. Our strategy offers a homogeneous background allowing strong coupling between the MP resonances of VSRRs and the two surface collective optical modes of a periodic array resulting from Wood anomaly, which leads to two narrow hybridized MP modes from the visible to near-infrared regions. In addition, the interaction effects in the VSRRs with various geometric parameters are also systematically studied. Owing to the narrow hybrid MP mode being highly sensitive to small changes in the surrounding media, the sensitivity and the figure of merit (FoM) of the embedded 3D metamaterials with fabrication feasibility were as high as 590 nm/RIU and 104, respectively, which holds practical applications in label-free biosensing, such as the detection of medical diagnoses and sport doping drugs.

6.
Nanomaterials (Basel) ; 11(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34835591

ABSTRACT

We study how to enhance the transverse magneto-optical Kerr effect (TMOKE) of ultra-thin magnetic dielectric films through the excitation of strong magnetic resonances on metasurface with a metal nanowire array stacked above a metal substrate with an ultra-thin magnetic dielectric film spacer. The plasmonic hybridizations between the Au nanowires and substrate result in magnetic resonances. The periodic arrangement of the Au nanowires can excite propagating surface plasmon polaritons (SPPs) on the metal surface. When the SPPs and the magnetic resonances hybridize, they can strongly couple to form two strong magnetic resonances, which are explained by a coupled oscillator model. Importantly, benefitting from the strong magnetic resonances, we can achieve a large TMOKE signal up to 26% in the ultra-thin magnetic dielectric film with a thickness of only 30 nm, which may find potential applications in nanophotonics, magnonics, and spintronics.

7.
J Phys Chem Lett ; 12(42): 10255-10261, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34652166

ABSTRACT

The incorporation of unnatural bases in DNA programming can break through the limits of Watson-Crick and Hoogsteen base pairing to expand the diversity of DNA structures. Thus, understanding the interaction between DNA and unnatural bases is of great importance in DNA nanotechnology. Here, we propose an approach of plasmonic antenna enhanced infrared spectroscopy to study the hydrogen bonding interaction between poly(thymine) DNA (poly T DNA) and melamine. The formation of multiple hydrogen bonds between melamine and thymine of poly T DNA is revealed by the appearance of a new infrared (IR) feature of the NH2 deformation vibration at 1680 cm-1. The binding rate constant (kb) and the dissociation rate constant (kd) of the affinity reaction reach 39.70 M-1·s-1 and 4.49 × 10-5 s-1, respectively. This work offers a valuable IR technique to study DNA nanostructures at the molecular level, providing unique physicochemical views of the interaction mechanism between DNA and unnatural bases in DNA programming.


Subject(s)
DNA/chemistry , Triazines/chemistry , Base Pairing , Hydrogen Bonding , Spectrophotometry, Infrared
8.
Nanomaterials (Basel) ; 11(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34578510

ABSTRACT

We theoretically study the plasmonic coupling between magnetic plasmon resonances (MPRs) and propagating surface plasmon polaritons (SPPs) in a three-dimensional (3D) metamaterial consisting of vertical Au split-ring resonators (VSRRs) array on Au substrate. By placing the VSRRs directly onto the Au substrate to remove the dielectric substrates effect, the interaction between MPRs of VSRRs and the SPP mode on the Au substrate can generate an ultranarrow-band hybrid mode with full width at half maximum (FWHM) of 2.2 nm and significantly enhanced magnetic fields, compared to that of VSRRs on dielectric substrates. Owing to the strong coupling, an anti-crossing effect similar to Rabi splitting in atomic physics is also obtained. Our proposed 3D metamaterial on a metal substrate shows high sensitivity (S = 830 nm/RIU) and figure of merit (FOM = 377), which could pave way for the label-free biomedical sensing.

9.
Nanomaterials (Basel) ; 11(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34578616

ABSTRACT

We theoretically study the multiple sharp Fano resonances produced by the near-field coupling between the multipolar narrow plasmonic whispering-gallery modes (WGMs) and the broad-sphere plasmon modes supported by a deep-subwavelength spherical hyperbolic metamaterial (HMM) cavity, which is constructed by five alternating silver/dielectric layers wrapping a dielectric nanosphere core. We find that the linewidths of WGMs-induced Fano resonances are as narrow as 7.4-21.7 nm due to the highly localized feature of the electric fields. The near-field coupling strength determined by the resonant energy difference between WGMs and corresponding sphere plasmon modes can lead to the formation of the symmetric-, asymmetric-, and typical Fano lineshapes in the far-field extinction efficiency spectrum. The deep-subwavelength feature of the proposed HMM cavity is verified by the large ratio (~5.5) of the longest resonant wavelength of WGM1,1 (1202.1 nm) to the cavity size (diameter: 220 nm). In addition, the resonant wavelengths of multiple Fano resonances can be easily tuned by adjusting the structural/material parameters (the dielectric core radius, the thickness and refractive index of the dielectric layers) of the HMM cavity. The narrow linewidth, multiple, and tunability of the observed Fano resonances, together with the deep-subwavelength feature of the proposed HMM cavity may create potential applications in nanosensors and nanolasers.

10.
Nanotechnology ; 32(46)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34352738

ABSTRACT

We numerically demonstrate an ultraviolet graphene ultranarrow absorption in a hybrid graphene-metal structure. The full-width at half maximum of the absorption band being 9 nm in ultraviolet range is achieved based on the coupling of lattice plasmon resonances of the metallic nanostructure to the optical dissipation of graphene. The position, absorbance and linewidth of the hybridized narrow resonant mode tuned by controlling geometrical parameters and materials are systematically investigated. The proposed structure possesses high refractive index sensitivity of 288 nm/RIU and figure of merit of 72, and can also be used to detect small molecules layer of sub-nanometer thickness and refractive index with small changes, providing promising applications in ultra-compact efficient biosensors.

11.
Nanomaterials (Basel) ; 11(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34443870

ABSTRACT

We study theoretically the Fano resonances (FRs) produced by the near-field coupling between the lowest-order (dipolar) sphere plasmon resonance and the dipolar cavity plasmon mode supported by an Ag nanoshell or the hybrid mode in a simple three-layered Ag nanomatryushka constructed by incorporating a solid Ag nanosphere into the center of Ag nanoshell. We find that the linewidth of dipolar cavity plasmon resonance or hybrid mode induced FR is as narrow as 6.8 nm (corresponding to a high Q-factor of ~160 and a long dephasing time of ~200 fs) due to the highly localized feature of the electric-fields. In addition, we attribute the formation mechanisms of typical asymmetrical Fano line profiles in the extinction spectra to the constructive (Fano peak) and the destructive interferences (Fano dip) arising from the symmetric and asymmetric charge distributions between the dipolar sphere and cavity plasmon or hybrid modes. Interestingly, by simply adjusting the structural parameters, the dielectric refractive index required for the strongest FR in the Ag nanomatryushka can be reduced to be as small as 1.4, which largely reduces the restriction on materials, and the positions of FR can also be easily tuned across a broad spectral range. The ultranarrow linewidth, highly tunability together with the huge enhancement of electric fields at the FR may find important applications in sensing, slow light, and plasmon rulers.

12.
Nanomaterials (Basel) ; 11(1)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33451028

ABSTRACT

We numerically investigate the multipolar plasmonic resonances of Aluminum nanoantenna tuned by a monolayer graphene from ultraviolet (UV) to visible regime. It is shown that the absorbance of the plasmonic odd modes (l = 1 and l = 3) of graphene-Al nanoribbon structure is enhanced while the absorption at the plasmonic even modes (l = 2) is suppressed, compared to the pure Al nanoribbon structure. With the presence of the monolayer graphene, a change in the resonance strength of the multipolar plasmonic modes results from the near field interactions of the monolayer graphene with the electric fields of the multipolar plasmonic resonances of the Al resonator. In particular, a clear absorption peak with a high quality (Q)-factor of 27 of the plasmonic third-order mode (l = 3) is realized in the graphene-Al nanoribbon structure. The sensitivity and figure of merit of the plasmonic third-order mode of the proposed Graphene-Al nanoribbon structure can reach 25 nm/RIU and 3, respectively, providing potential applications in optical refractive-index sensing.

13.
Nanoscale Adv ; 3(11): 3177-3183, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-36133663

ABSTRACT

Cesium-doped tungsten bronze Cs x WO3 (CWO) is an ideal near infrared (NIR) shielding material for solar filters. However, the NIR shielding ability of CWO-dispersed films easily deteriorates in hot humid environments, which severely hinders the commercial application of CWO. In this paper, UV/NIR shielding nanocomposite films were prepared by dispersing core-shell structured CWO@polydopamine (CWO@PDA) in a poly(vinyl alcohol) matrix. Because of the strong ultraviolet light absorption ability of PDA, it can shield ultraviolet light, which is generally detrimental to our health. The prepared nanocomposite films can efficiently shield 88.3% UV and 85.5% NIR radiation even though they show relatively high transparency in the visible range. Importantly, the good protection of the continuous PDA shells played an important role in enhancing the stability of CWO nanoparticles. The nanocomposite films also exhibit excellent stability in hot humid environments. Therefore, core-shell structured CWO@PDA nanoparticles have great potential as a novel UV/NIR shielding material for the development of efficient energy-saving windows.

14.
Nanomaterials (Basel) ; 10(12)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276469

ABSTRACT

We theoretically investigate multiple Fano resonances in an asymmetric hybrid graphene-metal metamaterial. The multiple Fano resonances emerge from the coupling of the plasmonic narrow bonding and antibonding modes supported by an in-plane graphene nanoribbon dimer with the broad magnetic resonance mode supported by a gold split-ring resonator. It is found that the Fano resonant mode with its corresponding dark mode of the antibonding mode in the in-plane graphene nanoribbon dimer is only achieved by structural symmetry breaking. The multiple Fano resonances can be tailored by tuning the structural parameters and Fermi levels. Active control of the multiple Fano resonances enables the proposed metamaterial to be widely applied in optoelectronic devices such as tunable sensors, switches, and filters.

15.
Nanomaterials (Basel) ; 10(10)2020 Oct 03.
Article in English | MEDLINE | ID: mdl-33023056

ABSTRACT

Designing various nanostructures to achieve narrowband light reflection resonances is desirable for optical sensing applications. In this work, we theoretically demonstrate two narrowband light reflection resonances resulting from the excitations of the zero-order transverse magnetic (TM) and transverse electric (TE) waveguide modes, in a waveguide structure consisting of an Au sphere array on an indium tin oxide (ITO) spacer on a silica (SiO2) substrate. The positions of the light reflection resonances can be tuned easily, by varying the array periods of gold (Au) spheres or by changing the thickness of the ITO film. More importantly, the light reflection resonances have a very narrow bandwidth, the full width at half maximum (FWHM) of which can be reduced to only several nanometers for the zero-order TM and TE waveguide modes. The conventionally defined performance parameters of sensors, sensitivity (S) and figure of merit (FOM), have quite high values of about 80 nm/RIU and 32, respectively, in the visible wavelength range.

16.
Opt Express ; 28(17): 24908-24917, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32907021

ABSTRACT

Greatly improving the light absorption efficiency of graphene and simultaneously manipulating the corresponding absorption bandwidth (broadband or narrowband) is practically important to design graphene-based optoelectronic devices. In this work, we will theoretically show how to largely enhance the absorption in graphene and efficiently control the absorption bandwidth in the visible region, by the excitation of the waveguide mode for the graphene monolayer to be sandwiched between the gold sphere array and dielectric waveguide structure composed of indium tin oxide (ITO) film on a quartz substrate. It is found that the maximum absorption efficiency can reach as high as about 45% and the full-width at half-maximum (FWHM) of the absorption peak can be tuned from about 1 to 10 nanometers, when the array period of gold spheres or the thickness of ITO film is changed.

17.
Opt Express ; 28(5): 6095-6101, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32225866

ABSTRACT

We propose an ultraviolet perfect ultranarrow band absorber by coating a dielectric grating on the monolayer graphene-dielectric-metal structure. The absorber presents an ultranarrow Fano lineshape with quality (Q) factor of 70 and a nearly perfect absorption of over 99.9% in the ultraviolet region, which is ascribed to the near field coupling of the optical dissipation of graphene and guide mode resonance of the dielectric grating. Structure parameters to the influence of the performance are investigated. The structure exhibits the high optical sensitivity (S = 150 nm/RIU, S* = 48/RIU) and figure of merit (FOM = 50, FOM* = 25374) and can also be used to detect the nanoscale analyte layer of sub-nanometer thickness, suggesting great potential applications in ultra-compact efficient biosensors for a much more sensitive detection of small refractive index changes.

18.
Nanomaterials (Basel) ; 11(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383802

ABSTRACT

Achieving perfect electromagnetic wave absorption with a sub-nanometer bandwidth is challenging, which, however, is desired for high-performance refractive-index sensing. In this work, we theoretically study metasurfaces for sensing applications based on an ultra-narrow band perfect absorption in the infrared region, whose full width at half maximum (FWHM) is only 1.74 nm. The studied metasurfaces are composed of a periodic array of cross-shaped holes in a silver substrate. The ultra-narrow band perfect absorption is related to a hybrid mode, whose physical mechanism is revealed by using a coupling model of two oscillators. The hybrid mode results from the strong coupling between the magnetic resonances in individual cross-shaped holes and the surface plasmon polaritons on the top surface of the silver substrate. Two conventional parameters, sensitivity (S) and figure of merit (FOM), are used to estimate the sensing performance, which are 1317 nm/RIU and 756, respectively. Such high-performance parameters suggest great potential for the application of label-free biosensing.

19.
Nanoscale Res Lett ; 14(1): 391, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31873823

ABSTRACT

Designing powerful electromagnetic wave modulators is required for the advancement of optical communication technology. In this work, we study how to efficiently modulate the amplitude of electromagnetic waves in near-infrared region, by the interactions between the interband transition of graphene and the magnetic dipole resonance in metamaterials. The reflection spectra of metamaterials could be significantly reduced in the wavelength range below the interband transition, because the enhanced electromagnetic fields from the magnetic dipole resonance greatly increase the light absorption in graphene. The maximum modulation depth of reflection spectra can reach to about 40% near the resonance wavelength of magnetic dipole, for the interband transition to approach the magnetic dipole resonance, when an external voltage is applied to change the Fermi energy of graphene.

20.
Nanoscale ; 11(40): 18543-18549, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31596296

ABSTRACT

Attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) is a powerful technique that provides structural and functional information during dynamic reactions in aqueous solutions. One existing limitation is the sensitivity to extract the signals of trace-level analytes from the background water in situ and in real time. Here, we proposed a novel ATR-SEIRAS platform that integrated a large-scale triangle gold antenna array onto a conventional ATR-IR platform to increase the sensitivity of this analytical technique. A square centimeter level well-ordered gold antenna array was fabricated onto an Si prism via nanosphere lithography. The size-dependent antenna array resonance had weak correlation with the incident polarization and antenna orientation, allowing antenna array-enhanced IR detection without the requirement of a microscope. In addition, the antenna resonance shift that occurred due to analyte adsorption-induced refractive index variation could be minimized benefiting from the high refractive index of Si (3.4). As a demonstration, we dynamically monitored the adsorption of the trace levels of proteins on top of the antenna array with a real signal enhancement factor larger than 300. Our platform opens an avenue to apply antenna array-enhanced IR spectroscopy in an aqueous environment measured via commercial IR instruments, which is extremely promising for the interfacial applications that require signal enhancement.

SELECTION OF CITATIONS
SEARCH DETAIL
...