Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Physiol ; 232(8): 2178-2185, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27935034

ABSTRACT

MicroRNAs have been used as diagnostic and prognostic biomarkers for many cancers including oral squamous cell carcinoma (OSCC). Several studies have been shown that microRNA (miRNA) play important roles during the progression of OSCC. However, the results vary largely in different studies due to different platforms and sample sizes. In this study, we systematically evaluated a large scale of miRNA profiles from current qualified OSCC samples, and further investigated the functions of genes regulated by these key miRNAs as well as the signaling pathways through which these miRNA effect carcinogenesis. Seven key miRNAs were identified, and of which three were significantly upregulated, including hsa-miR-21, hsa-miR-31, hsa-miR-338, and four were downregulated, namely hsa-miR-125b, hsa-miR-133a, hsa-miR-133b, and hsa-miR-139. The function enrichment analysis revealed that target genes of upregulated miRNAs were associated with cellular protein metabolic process, macromolecule metabolic process, and TGF-beta pathway, while the targets of downregulated were enriched in negative regulation of macromolecule biosynthetic process and gene expression, and p53, long-term potentiation and adherens junction pathways. Transcription factor analysis revealed that there were 67 (51.1%) transcription factors influenced by both up and downregulated miRNAs. In summary, seven key miRNAs were found to play essential role in progression of OSCC, as well as the target genes and transcription factors of these miRNAs. The potential functions of these target genes identified in our study may be profitable to diagnosis and prognostic prediction of OSCC as biomarkers. J. Cell. Physiol. 232: 2178-2185, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/genetics , Gene Expression Profiling/methods , Head and Neck Neoplasms/genetics , MicroRNAs/genetics , Mouth Neoplasms/genetics , Oligonucleotide Array Sequence Analysis , Transcriptome , Carcinoma, Squamous Cell/pathology , Case-Control Studies , Computational Biology , Databases, Genetic , Disease Progression , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genetic Association Studies , Genetic Predisposition to Disease , Head and Neck Neoplasms/pathology , Humans , Mouth Neoplasms/pathology , Phenotype , Predictive Value of Tests , Signal Transduction/genetics , Squamous Cell Carcinoma of Head and Neck , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Mol Ther Nucleic Acids ; 5: e349, 2016.
Article in English | MEDLINE | ID: mdl-28131272

ABSTRACT

Owing to its easy-to-use and multiplexing nature, the genome editing tool CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats (CRISPR) associated nuclease 9) is revolutionizing many areas of medical research and one of the most amazing areas is its gene therapy potentials. Previous explorations into the therapeutic potentials of CRISPR-Cas9 were mainly conducted in vitro or in animal germlines, the translatability of which, however, is either limited (to tissues with adult stem cells amenable to culture and manipulation) or currently impermissible (due to ethic concerns). Recently, important progresses have been made on this regard. Several studies have demonstrated the ability of CRISPR-Cas9 for in vivo gene therapy in adult rodent models of human genetic diseases delivered by methods that are potentially translatable to human use. Although these recent advances represent a significant step forward to the eventual application of CRISPR-Cas9 to the clinic, there are still many hurdles to overcome, such as the off-target effects of CRISPR-Cas9, efficacy of homology-directed repair, fitness of edited cells, immunogenicity of therapeutic CRISPR-Cas9 components, as well as efficiency, specificity, and translatability of in vivo delivery methods. In this article, we introduce the mechanisms and merits of CRISPR-Cas9 in genome editing, briefly retrospect the applications of CRISPR-Cas9 in gene therapy explorations and highlight recent advances, later we discuss in detail the challenges lying ahead in the way of its translatability, propose possible solutions, and future research directions.

SELECTION OF CITATIONS
SEARCH DETAIL
...