Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell Int ; 24(1): 152, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678242

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is a malignancy among female globally. Circular RNAs (circRNAs) are a family of circular endogenous RNAs generated from selective splicing, which take part in many traits. Former investigation suggested that circ-TFRC was abnormally expressed in breast cancer (BC). Further, the role of circ-TFRC to the progress of OC remains unclear. So, the aim of this study was to reveal the regulatory mechanism of circ-TFRC. METHODS: Our team made the luciferase reporter assay to validate circ-TFRC downstream target. Transwell migration assay, 5-ethynyl-20-deoxyuridine, and cell counting kit-8 were applied to investigate both proliferation and migration. In vivo tumorigenesis and metastasis assays were performed to investigate the circ-TFRC role in OC. RESULTS: The outputs elucidated that circ-TFRC expression incremented in OC cells and tissues. circ-TFRC downregulation inhibited OC cell proliferation as well as migration in in vivo and in vitro experiments. The luciferase results validated that miR-615-3p and IGF2 were circ-TFRC downstream targets. IGF2 overexpression or miR-615-3p inhibition reversed OC cell migration after circ-TFRC silencing. Also, IGF2 overexpression reversed OC cell migration and proliferation post miR-615-3p upregulation. CONCLUSION: Results demonstrate that circ-TFRC downregulation inhibits OC progression and metastasis via IGF2 expression regulation and miR-615-3psponging.

2.
Heliyon ; 10(5): e27212, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38468944

ABSTRACT

Objective: The high mortality rate of epithelial ovarian cancer (EOC) is often attributed to the frequent development of chemoresistance. DNA methylation is a predictive biomarker for chemoresistance. Methods: This study utilized DNA methylation profiles and relevant information from GEO and TCGA to identify different methylated CpG sites (DMCs) between chemoresistant and chemosensitive patients. Subsequently, we constructed chemoresistance risk models with DMCs. The genes corresponding to candidate DMCs in chemoresistance risk models were further analyzed to identify different methylated gene symbols (DMGs) associated with chemoresistance. The DMGs that showed a strong correlation with the corresponding DMCs were analyzed through immunohistochemistry. Results: Compared to chemosensitive EOC patients, chemoresistant patients showed 423 hypermethylated CpGs and 1445 hypomethylated CpGs. The chemoresistance risk models based on DMCs have shown the improved predictive ability for chemoresistance in EOC (AUC = 65.0-76.2%). The methylations of cg25510164, cg13154880, cg15362155 and cg08665359 were strongly associated with decreased risk of chemoresistance. Conversely, the methylation of cg08872590 and cg14739437 significantly increased the risk. We identified 13 DMGs, from 47 DMCs corresponding genes, between chemosensitive and chemoresistant samples. Among the DMGs, the expression levels of DDR2 and OPCML exhibited strong correlations with the corresponding DMCs. DDR2 and OPCML both showed enhanced expression in chemoresistant ovarian microarray tissue. Conclusions: Hypomethylated CpGs may play a significant role in DNA methylation associated with chemoresistance in EOC. The epigenetic modification of DDR2 could have important implications for the development of chemoresistance. Our study provides valuable insights for future research on DNA methylation in the chemoresistance of EOC.

3.
J Gynecol Oncol ; 35(2): e13, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37921598

ABSTRACT

OBJECTIVE: We previously elucidated that long non-coding RNA Promoter of CDKN1A Antisense DNA damage Activated RNA (PANDAR) as a p53-dependent oncogene to promote cisplatin resistance in ovarian cancer (OC). Intriguingly, high level of p53-independent PANDAR was found in cisplatin-resistant patients with p53 mutation. Here, our study probed the new roles and the underlying mechanisms of PANDAR in p53-mutant OC cisplatin-resistance. METHODS: A2780 and A2780-DDP cells were served as OC cisplatin-sensitive and cisplatin-resistant cells. HO-8910PM cells were subjected to construct chemotherapy-induced extracellular vesicles (Chemo-EVs). Transmission electron microscopy (TEM) and nanoparticle tracking analysis were employed to evaluate Chemo-EVs. Cell viability was assessed using cell counting kit-8 and colony formation assays. Cell apoptosis was assessed using Annexin V and propidium iodide staining. The relationships between PANDAR, serine and arginine-rich pre-mRNA splicing factor 9 (SRSF9) were verified by RNA immunoprecipitation and fluorescence in situ hybridization. Tumor xenograft experiment was employed to evaluate the effects of PANDAR-Chemo-EVs on OC cisplatin-resistance in vivo. Immunofluorescent staining and immunohistochemistry were performed in tumor tissue. RESULTS: PANDAR level increased in OC patients with p53-mutation. PANDAR efflux enacted via exosomes under cisplatin conditions. Additionally, exosomes from OC cell lines carried PANDAR, which significantly increased cell survival and chemoresistance in vitro and tumor progression and metastasis in vivo. During cisplatin-induced stress, SRSF9 was recruited to nuclear bodies by increased PANDAR and muted apoptosis in response to cisplatin. Besides, SRSF9 significantly increased the ratio of SIRT4/SIRT6 mRNA in OC. CONCLUSION: Cisplatin-induced exosomes transfer PANDAR and lead to a rapid adaptation of OC cell survival through accumulating SRSF9 following cisplatin stress exposure.


Subject(s)
Exosomes , Mitochondrial Proteins , Ovarian Neoplasms , Sirtuins , Humans , Female , Cisplatin/pharmacology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , In Situ Hybridization, Fluorescence , Cell Proliferation/genetics , Apoptosis , RNA/metabolism , RNA/pharmacology , Phenotype , Sirtuins/genetics , Sirtuins/metabolism , Sirtuins/pharmacology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...