Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Appl Genet ; 63(1): 61-72, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34554437

ABSTRACT

Long terminal repeat retrotransposons (LTR-RTs) contribute a large fraction of many sequenced plant genomes and play important roles in genomic diversity and phenotypic variations. LTR-RTs are abundantly distributed in plant genomes, facilitating the development of markers based on LTR-RTs for a variety of genotyping purposes. Whole-genome analysis of LTR-RTs was performed in Cleistogenes songorica. A total of 299,079 LTR-RTs were identified and classified as Gypsy type, Copia type, or other type. LTR-RTs were widely distributed in the genome, enriched in the heterochromatic region of the chromosome, and negatively correlated with gene distribution. However, approximately one-fifth of genes were still interrupted by LTR-RTs, and these genes are annotated. Furthermore, four types of primer pairs (PPs) were designed, namely, retrotransposon-based insertion polymorphisms, inter-retrotransposon amplified polymorphisms, insertion site-based polymorphisms, and retrotransposon-microsatellite amplified polymorphisms. A total of 350 PPs were screened in 23 accessions of the genus Cleistogenes, of which 80 PPs showed polymorphism, and 72 PPs showed transferability among Gramineae and non-Gramineae species. In addition, a comparative analysis of homologous LTR-RTs was performed with other related grasses. Taken together, the study will serve as a valuable resource for genotyping applications for C. songorica and related grasses.


Subject(s)
Retroelements , Terminal Repeat Sequences , Base Sequence , Evolution, Molecular , Genome, Plant , Phylogeny , Poaceae , Retroelements/genetics , Terminal Repeat Sequences/genetics
2.
Plant Biotechnol J ; 20(3): 592-609, 2022 03.
Article in English | MEDLINE | ID: mdl-34717292

ABSTRACT

Melilotus species are used as green manure and rotation crops worldwide and contain abundant pharmacologically active coumarins. However, there is a paucity of information on its genome and coumarin production and function. Here, we reported a chromosome-scale assembly of Melilotus albus genome with 1.04 Gb in eight chromosomes, containing 71.42% repetitive elements. Long terminal repeat retrotransposon bursts coincided with declining of population sizes during the Quaternary glaciation. Resequencing of 94 accessions enabled insights into genetic diversity, population structure, and introgression. Melilotus officinalis had relatively larger genetic diversity than that of M. albus. The introgression existed between M. officinalis group and M. albus group, and gene flows was from M. albus to M. officinalis. Selection sweep analysis identified candidate genes associated with flower colour and coumarin biosynthesis. Combining genomics, BSA, transcriptomics, metabolomics, and biochemistry, we identified a ß-glucosidase (BGLU) gene cluster contributing to coumarin biosynthesis. MaBGLU1 function was verified by overexpression in M. albus, heterologous expression in Escherichia coli, and substrate feeding, revealing its role in scopoletin (coumarin derivative) production and showing that nonsynonymous variation drives BGLU enzyme activity divergence in Melilotus. Our work will accelerate the understanding of biologically active coumarins and their biosynthetic pathways, and contribute to genomics-enabled Melilotus breeding.


Subject(s)
Coumarins , Melilotus , Coumarins/metabolism , Melilotus/chemistry , Melilotus/genetics , Melilotus/metabolism , Plant Breeding , Systems Biology , Transcriptome/genetics
3.
Plants (Basel) ; 10(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922432

ABSTRACT

The DNA-binding with one zinc finger (Dof) family of plant-specific transcription factors has a variety of important functions in gene transcriptional regulation, development, and stress responses. However, the structure and expression patterns of Dof family have not been identified in Cleistogenes songorica, which is an important xerophytic and perennial gramineous grass in desert grassland. In this study, 50 Dof genes were identified in C. songorica and could be classified into four groups. According to genome-wide analysis, 46 of 50 Dof genes were located on 20 chromosomes, and the gene structure and conserved protein motif of these proteins were analyzed. In addition, phylogenetic analysis of Dof genes in C. songorica, Arabidopsis thaliana, Oryza sativa, and Brachypodium distachyon estimated the evolutionary relationships, and these genes were grouped into seven clusters. Moreover, the expression profiles of these Dof genes in C. songorica were analyzed in response to high/low temperature, salinity, and ABA treatments. These results will provide valuable information for future studies on gene classification, cloning, and functional characterization of this family in C. songorica.

4.
J Appl Genet ; 61(3): 367-377, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32507975

ABSTRACT

Simple sequence repeat (SSR) markers are commonly used for many genetic applications, such as map construction, fingerprinting, and genetic diversity analyses, due to their high reproducibility, polymorphism, and abundance. Endogenous miRNAs play essential roles in plant development and gene expression under diverse biotic and abiotic stress conditions. In the present study, we predicted 110 miRNA-SSR primer pairs from 287 precursor miRNAs. Among 110 primer pairs, 85 were successfully amplified and examined for transferability to other Gramineae and non-Gramineae species. The results showed that all 82 primer pairs yielded unambiguous and strong amplification, and across the 23 studied Cleistogenes accessions, a total of 385 alleles were polymorphic. The number of alleles produced per primer varied from 3 to 11, with an average of 4.69 per locus. The expected heterozygosity (He) ranged from 0.44 to 0.88, with an average of 0.74 per locus, and the PIC (Polymorphism Information Content) values ranged from 0.34 to 0.87, with an average of 0.69 per locus. Furthermore, 1422 miRNA target genes were predicted and analyzed using the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases. In conclusion, the results showed that an miRNA-based microsatellite marker system can be applicable for genetic diversity and marker-assisted breeding studies.


Subject(s)
Genome, Plant , MicroRNAs/genetics , Microsatellite Repeats , Poaceae/genetics , Alleles , Gene Ontology , RNA, Plant/genetics , Sequence Analysis, DNA
5.
Sci Rep ; 9(1): 13017, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506537

ABSTRACT

Melilotus is an important forage legume, with high values as feed and medicine, and widely used as green manure, honey plant, and wildlife habitat enhancer. The genetic diversity, structure and subdivision of this forage crop remain unclear, and plant genetic resources are the basis of biodiversity and ecosystem diversity and have attracted increasing attention. In this study, the whole collection of 573 accessions from the National Gene Bank of Forage Germplasm (NGBFG, China) and 48 accessions from the National Plant Germplasm System (NPGS, USA) in genus Melilotus were measured with respect to five seed characters: seed length, width, width-to-length ratio, circumference and 100-seed weight. Shannon' genetic diversity index (H') and phenotypic differentiation (Pst) were calculated to better describe the genetic diversity. The ITS and matK sequences were used to construct phylogenetic trees and study the genetic relationships within genus Melilotu. Based on seed morphology and molecular marker data, we preliminarily developed core collections and the sampling rates of M. albus and M. officinalis were determined to be 15% and 25%, respectively. The results obtained here provide preliminary sorting and supplemental information for the Melilotus collections in NGBFG, China, and establish a reference for further genetic breeding and other related projects.


Subject(s)
Ecosystem , Genetic Markers , Genetic Variation , Melilotus/genetics , Phylogeny , Seed Bank/statistics & numerical data , Seeds/genetics , Alleles , China , Melilotus/classification
6.
BMC Plant Biol ; 19(1): 23, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30634906

ABSTRACT

BACKGROUND: Water stress seriously constrains plant growth and yield. Long non-coding RNAs (lncRNAs) serve as versatile regulators in various biological regulatory processes. To date, the systematic screening and potential functions of lncRNA have not yet been characterized in Cleistogenes songorica, especially under water stress conditions. RESULTS: In this study, we obtained the root and shoot transcriptomes of young C. songorica plants subjected to different degrees of water stress and recovery treatments by Illumina-based RNA-seq. A total of 3397 lncRNAs were identified through bioinformatics analysis. LncRNA differential expression analysis indicated that the higher response of roots compared to shoots during water stress and recovery. We further identified the 1644 transcription factors, 189 of which were corresponded to 163 lncRNAs in C. songorica. Though comparative analyses with major Poaceae species based on blast, 81 water stress-related orthologues regulated to lncRNAs were identified as a core of evolutionary conserved genes important to regulate water stress responses in the family. Among these target genes, two genes were found to be involved in the abscisic acid (ABA) signalling pathway, and four genes were enriched for starch and sucrose metabolism. Additionally, the 52 lncRNAs were predicted as target mimics for microRNAs (miRNAs) in C. songorica. RT-qPCR results suggested that MSTRG.43964.1 and MSTRG.4400.2 may regulate the expression of miRNA397 and miRNA166, respectively, as target mimics under water stress and during recovery. Finally, a co-expression network was constructed based on the lncRNAs, miRNAs, protein-coding genes (PCgenes) and transcription factors under water stress and during recovery in C. songorica. CONCLUSIONS: In C. songorica, lncRNAs, miRNAs, PCgenes and transcription factors constitute a complex transcriptional regulatory network which lncRNAs can regulate PCgenes and miRNAs under water stress and recovery. This study provides fundamental resources to deepen our knowledge on lncRNAs during ubiquitous water stress.


Subject(s)
MicroRNAs/metabolism , Poaceae/metabolism , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcriptome/genetics , MicroRNAs/genetics , Poaceae/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Transcription Factors/genetics
7.
Sci Rep ; 8(1): 14138, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30237524

ABSTRACT

MicroRNAs (miRNAs) exhibit diverse and important roles in regulation of various biological processes at the post-transcriptional level in plants. In this study, Melilotus albus miRNA and their target genes were elucidated from five M. albus near-isogenic lines which differ in coumarin content to construct small RNA libraries through high-throughput sequencing. A total of 417 known miRNAs and 76 novel miRNAs were identified in M. albus. In addition, 4155 different target genes for 114 known miRNA families and 14 target genes for 2 novel miRNAs were identified in M. albus. Moreover, mtr-miR5248 and mtr-miR7701-5p target c35498_g3 and gma-miR396a-3p target c37211_g1 involved in coumarin biosynthesis were identified by using the differential expression of the miRNAs and their target genes correlation analysis. The abundance of miRNAs and potential target genes were validated by qRT-PCR analysis. We also found that there were both positive and negative expression changing patterns between miRNAs and their related target genes. Our first and preliminary study of miRNAs will contribute to our understanding of the functions and molecular regulatory mechanisms of miRNAs and their target genes, and provide information on regulating the complex coumarin pathway in M. albus for future research.


Subject(s)
Coumarins/analysis , Gene Expression Regulation, Plant , Melilotus/genetics , MicroRNAs/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Melilotus/chemistry , RNA, Plant/genetics
8.
Molecules ; 23(4)2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29614822

ABSTRACT

Melilotus albus and Melilotus officinalis are widely used in forage production and herbal medicine due to the biological activity of their coumarins, which have many biological and pharmacological activities, including anti-HIV and anti-tumor effects. To comprehensively evaluate M. albus and M. officinalis coumarin content (Cou), morphological variation, and molecular phylogeny, we examined the Cou, five morphological traits and the molecular characterization based on the trnL-F spacer and internal transcribed spacer (ITS) regions of 93 accessions. Significant (p < 0.05) variation was observed in the Cou and all five morphological traits in both species. Analysis of population differentiation (Pst) of the phenotypic traits showed that powdery mildew resistance (PMR) had the greatest Pst, meaning that this trait demonstrated the largest genetic differentiation among the accessions. The Pst values of dry matter yield (DMY) and Cou were relatively high. Biplot analysis identified accessions with higher DMY and higher and lower Cou. Analysis of molecular sequence variation identified seven haplotypes of the trnL-F spacer and 13 haplotypes of the ITS region. Based on haplotype and sequence analyses, the genetic variation of M. officinalis was higher than that of M. albus. Additionally, ITS sequence analysis showed that the variation among accessions was larger than that among species across three geographical areas: Asia, Europe, and North America. Similarly, variation among accessions for both the trnL-F and ITS sequences were larger than the differences between the geographical areas. Our results indicate that there has been considerable gene flow between the two Melilotus species. Our characterization of Cou and the morphological and genetic variations of these two Melilotus species may provide useful insights into germplasm improvement to enhance DMY and Cou.


Subject(s)
Coumarins/metabolism , Melilotus/classification , Melilotus/metabolism , DNA, Chloroplast/genetics , Genetic Variation/genetics , Haplotypes/genetics , Melilotus/genetics , Phylogeny , Sequence Analysis, DNA
9.
Sci Rep ; 8(1): 6287, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29674749

ABSTRACT

Cleistogenes songorica, a grass species that exhibits two spatially different type of inflorescence, chastogamy (CH), flowers localized at the top, and cleistogamy (CL) flowers embedded in leaf sheath. This study aimed at dissecting reasons underlying these distinct floral development patterns at morphological and microRNA level. Phenotyping for CH and CL was conducted and four small RNA libraries were constructed from the CH and CL flowers for high-throughput sequencing to identify the differentiated miRNAs. As results, spikelet, stigma, anther, lemma and lodicule length of CH flowers were found larger than that of CL, and so was seed setting. Also, 17 flower-related differential expression miRNAs were identified which were associated with floral organ development and morphogenesis, and the flower development. Further results showed that miR159a.1-CL3996.Contig2 pair was related to anther development, miR156a-5p-CL1954.Contig2 was linked to response to high light intensity, miR408-3p/miR408d-Unigene429 was related to pollination and Unigene429 positively regulated flower development. To our knowledge, this is the first study on differential miRNA accumulation between CH and CL flowers and our study serves as a foundation to the future elucidation of regulatory mechanisms of miRNAs in the divergent development of CL and CH flowers in a single plant.


Subject(s)
Flowers/genetics , MicroRNAs/genetics , Plants/genetics , RNA, Plant/genetics , High-Throughput Nucleotide Sequencing , Microscopy, Electron, Scanning , Plants/embryology , Pollen/ultrastructure , Seeds/genetics , Transcriptome/genetics
10.
PLoS One ; 13(3): e0194172, 2018.
Article in English | MEDLINE | ID: mdl-29534094

ABSTRACT

Melilotus is an important genus of legume plants and an herbage with excellent nitrogen fixation; it can tolerate extreme environmental conditions and possesses important medicinal value. However, there is limited genetic information about the genus; thus, we analysed four chloroplast loci (rbcL, matK, psbA-trnH and trnL-F) and one nuclear region (ITS) to determine the genetic diversity of 199 accessions from 18 Melilotus species. The rbcL and matK sequences were highly conserved, whereas the trnL-F and ITS sequences contained variable and parsimony-informative sites. In our analyses of the single and combined regions, we calculated the pairwise distance, haplotype and nucleotide diversity and gaps and then constructed phylogenetic trees to assess the genetic diversity, and our results revealed significant variations among the different accessions. The genetic distance values were between zero and nine, and based on the combined regions, the highest frequency value was approximately four. Melilotus showed high haplotype and nucleotide diversity, particularly in the ITS sequences, with values of 0.86 and 0.0087, respectively. The single ITS sequence, psbA-trnH, and the combined matK+rbcL+trnL-F (MRT) and matK+rbcL+psbA-trnH+trnL-F+ITS (MRPTI) regions showed interspecific variation in the gap analysis. Phylogenetic trees calculated using ITS, psbA-trnH and MRPTI sequences indicated distinct genetic relationship in 18 species, and these species could be divided into two groups. By determining the genetic diversity of plants, we can evaluate the genetic relationships among species and accessions, providing a basis for preserving and utilizing the genetic resources of Melilotus.


Subject(s)
DNA, Plant/genetics , Genetic Variation , Melilotus/genetics , Cell Nucleus/genetics , DNA, Chloroplast/genetics , Phylogeny , Sequence Analysis, DNA
11.
Sci Rep ; 7(1): 17959, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29263338

ABSTRACT

Melilotus is one of the most important legume forages, but the lack of molecular markers has limited the development and utilization of Melilotus germplasm resources. In the present study, 151 M clean reads were generated from various genotypes of Melilotus albus using Illumina sequencing. A total of 19,263 potential EST-SSRs were identified from 104,358 unigene sequences. Moreover, 18,182 primer pairs were successfully designed, and 550 primer pairs were selected using criteria of base repeat type, fragment length and annealing temperature. In addition, 550 primer pairs were screened by using PCR amplification products and used to assess polymorphisms in 15 M. albus accessions. A total of 114 primer pairs were detected as being highly polymorphic, and the average polymorphism information content (PIC) value was 0.79. Furthermore, those 114 polymorphic primer pairs were used to evaluate the transferability to 18 species of the genus Melilotus, and 70 EST-SSR markers were found to be transferable among the 18 Melilotus species. According to the UPGMA dendrogram and STRUCTURE analysis, the 18 Melilotus species were classified into three clusters. This study offers a valuable resource for the genetic diversity and molecular assisted breeding of germplasm resources in the genus Melilotus.


Subject(s)
Expressed Sequence Tags , Melilotus/genetics , Microsatellite Repeats/genetics , Transcriptome/genetics , Genetic Markers/genetics , Genetic Variation/genetics , Genetics, Population/methods , Polymorphism, Genetic/genetics
12.
Sci Rep ; 7(1): 4577, 2017 07 04.
Article in English | MEDLINE | ID: mdl-28676637

ABSTRACT

Coumarin and its derivatives are widely used as fragrances in industrial products and have medical value. The goal of the present study was to discover genes and pathways related to coumarin biosynthesis in Melilotus albus using transcriptome analysis. The genes of five M. albus near-isogenic lines (NILs) that had different coumarin content and ß-glucosidase activity according to the investigation of pedigree were quantified and then analysed by RNA-Seq. Using transcriptome analysis, differentially expressed genes (DEGs) were identified in two pairwise comparisons that differed in coumarin content as well as in two pairwise comparisons that differed in ß-glucosidase activity. Gene expression pattern analysis suggested similar transcriptional trends in the genotypes with the same coumarin levels. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database of DEGs was used to identify functional pathways associated with coumarin biosynthesis. We identified 111 unigenes, with several DEGs among them possibly being related to coumarin synthesis pathways. Unigenes encoding a hexokinase, an abscisic acid receptor, a phenylalanine ammonia-lyase (PAL) and two peroxidases particularly showed correspondence with the coumarin content of different genotypes. These results will contribute to a better understanding of the coumarin biosynthesis in M. albus.


Subject(s)
Coumarins/metabolism , Melilotus/genetics , Melilotus/metabolism , Transcriptome , Biosynthetic Pathways/genetics , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Plant , Genotype , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Sequence Analysis, RNA , beta-Glucosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...