Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2116, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055384

ABSTRACT

Chemical warfare agents (CWAs) significantly threaten human peace and global security. Most personal protective equipment (PPE) deployed to prevent exposure to CWAs is generally devoid of self-detoxifying activity. Here we report the spatial rearrangement of metal-organic frameworks (MOFs) into superelastic lamellar-structured aerogels based on a ceramic network-assisted interfacial engineering protocol. The optimized aerogels exhibit efficient adsorption and decomposition performance against CWAs either in liquid or aerosol forms (half-life of 5.29 min, dynamic breakthrough extent of 400 L g-1) due to the preserved MOF structure, van-der-Waals barrier channels, minimized diffusion resistance (~41% reduction), and stability over a thousand compressions. The successful construction of the attractive materials offers fascinating perspectives on the development of field-deployable, real-time detoxifying, and structurally adaptable PPE that could be served as outdoor emergency life-saving devices against CWAs threats. This work also provides a guiding toolbox for incorporating other critical adsorbents into the accessible 3D matrix with enhanced gas transport properties.

2.
Ecotoxicol Environ Saf ; 254: 114765, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36907092

ABSTRACT

Pyroxasulfone (PYS) is an isoxazole herbicide favored for its high activity. However, the metabolic mechanism of PYS in tomato plants and the response mechanism of tomato to PYS are still lacking. In this study, it was found that tomato seedlings had a strong ability to absorb and translocate PYS from roots to shoots. The highest accumulation of PYS was in the apex tissue of the tomato shoots. Using UPLC-MS/MS, five metabolites of PYS were detected and identified in tomato plants, and their relative contents in different parts of tomato plants varied greatly. The serine conjugate, DMIT [5, 5-dimethyl-4, 5-dihydroisoxazole-3-thiol (DMIT)] &Ser, was the most abundant metabolites of PYS in tomato plants. In tomato plants, the conjugation of thiol-containing metabolic intermediates of PYS to serine may mimic the cystathionine ß-synthase-catalyzed condensation of serine and homocysteine (in the pathway sly00260 sourced from KEGG database). This study ground breakingly proposed that serine may play an important role in plant metabolism of PYS and fluensulfone (whose molecular structure is similar to PYS). PYS and atrazine (whose toxicity profile is similar to PYS but not conjugate with serine) produced different regulatory outcomes for endogenous compounds in the pathway sly00260. Differential metabolites in tomato leaves exposed to PYS compared with the control, including amino acids, phosphates, and flavonoids, may play important roles in tomato response to PYS stress. This study provides inspiration for the biotransformation of sulfonyl-containing pesticides, antibiotics and other compounds in plants.


Subject(s)
Seedlings , Solanum lycopersicum , Seedlings/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Isoxazoles/metabolism , Serine/metabolism , Sulfhydryl Compounds/metabolism
3.
Math Biosci Eng ; 19(8): 8304-8333, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35801467

ABSTRACT

The germinal center (GC) is a self-organizing structure produced in the lymphoid follicle during the T-dependent immune response and is an important component of the humoral immune system. However, the impact of the special structure of GC on antibody production is not clear. According to the latest biological experiments, we establish a spatiotemporal stochastic model to simulate the whole self-organization process of the GC including the appearance of two specific zones: the dark zone (DZ) and the light zone (LZ), the development of which serves to maintain an effective competition among different cells and promote affinity maturation. A phase transition is discovered in this process, which determines the critical GC volume for a successful growth in both the stochastic and the deterministic model. Further increase of the volume does not make much improvement on the performance. It is found that the critical volume is determined by the distance between the activated B cell receptor (BCR) and the target epitope of the antigen in the shape space. The observation is confirmed in both 2D and 3D simulations and explains partly the variability of the observed GC size.


Subject(s)
B-Lymphocytes , Germinal Center , Antigens
4.
ACS Appl Mater Interfaces ; 13(40): 47835-47844, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34559509

ABSTRACT

Poisons and poisonous weapons in armed conflict, especially chemical warfare agents (CWAs), pose serious threats to global security. Porous materials have recently been regarded as promising candidates to defend personnel in a CWA-contaminated environment, but challenges remain for integrating these materials into protective garments without sacrificing the intrinsic flexibility of fibers. Here, we report a rigid-flexible coupling hypercross-linking methodology to create flexible sponge-like nanofibers featuring hierarchical radial gradient porous nanoarchitectures, in which the inner structure is a mesoporous multichambered network, and the outer structure is a dense domain with a microporous network structure. Experimental and computational evidence supports the contention that sponge nanofibers with distinctive pore topology and robust bendability can be designed by manipulating the flexibility of building blocks. The resulting heterogeneous nanofibers exhibit integrated properties of spatially selective superstructures, abundant micropores, interconnected mesopores, a high surface area (579 m2 g-1), remarkable flexibility, and exceptional CWA affinity, which are extraordinarily effective for adsorptive performance (498 mg g-1). The successful synthesis of these materials might inspire the development of chemical protective materials in an efficient, self-standing, and structurally adaptive form.

5.
Nonlinear Dyn ; 101(3): 1643-1651, 2020.
Article in English | MEDLINE | ID: mdl-32836813

ABSTRACT

In this paper, we construct a stochastic model of the 2019-nCoV transmission in a confined space, which gives a detailed account of the interaction between the spreading virus and mobile individuals. Different aspects of the interaction at mesoscopic level, such as the human motion, the shedding and spreading of the virus, its contamination and invasion of the human body and the response of the human immune system, are touched upon in the model, their relative importance during the course of infection being evaluated. The model provides a bridge linking the epidemic statistics to the physiological parameters of individuals and may serve a theoretical guidance for epidemic prevention and control.

6.
Macromol Rapid Commun ; 39(10): e1800058, 2018 May.
Article in English | MEDLINE | ID: mdl-29656568

ABSTRACT

Nanofiber-based hydrogels (NFHGs) prepared by the combination of traditional hydrogels and novel nanofibers have demonstrated great potential in various application fields, owing to their integrated advantages of superhydrophilicity, high water-holding capacity, good biocompatibility, enhanced mechanical strength, and excellent structural tenability. In this review, a comprehensive overview of the structure design and synthetic strategy of NFHGs derived from electrospinning technique, weaving, freeze-drying, 3D printing, and molecular self-assembling method is provided. The widely researched multifunctional applications, primarily involving tissue engineering, drug delivery, sensing, intelligent actuator, and oil/water separation are also presented. Furthermore, some unsolved scientific issues and possible directions for future development of this field are also intensively discussed.


Subject(s)
Hydrogels/chemistry , Nanofibers/chemistry , Biocompatible Materials/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...