Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.516
Filter
1.
Cell Rep ; 43(7): 114434, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963763

ABSTRACT

Development of type 2 diabetes mellitus (T2DM) is associated with low-grade chronic type 2 inflammation and disturbance of glucose homeostasis. Group 2 innate lymphoid cells (ILC2s) play a critical role in maintaining adipose homeostasis via the production of type 2 cytokines. Here, we demonstrate that CB2, a G-protein-coupled receptor (GPCR) and member of the endocannabinoid system, is expressed on both visceral adipose tissue (VAT)-derived murine and human ILC2s. Moreover, we utilize a combination of ex vivo and in vivo approaches to explore the functional and therapeutic impacts of CB2 engagement on VAT ILC2s in a T2DM model. Our results show that CB2 stimulation of ILC2s protects against insulin-resistance onset, ameliorates glucose tolerance, and reverses established insulin resistance. Our mechanistic studies reveal that the therapeutic effects of CB2 are mediated through activation of the AKT, ERK1/2, and CREB pathways on ILC2s. The results reveal that the CB2 agonist can serve as a candidate for the prevention and treatment of T2DM.

2.
Transl Oncol ; 47: 102049, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964031

ABSTRACT

BACKGROUND: Nuclear cap-binding protein 2 (NCBP2), as the component of the cap-binding complex, participates in a number of biological processes, including pre-mRNA splicing, transcript export, translation regulation and other gene expression steps. However, the role of NCBP2 on the tumor cells and immune microenvironment remains unclear. To systematically analyze and validate functions of NCBP2, we performed a pan-cancer analysis using multiple approaches. METHODS: The data in this study were derived from sequencing, mutation, and methylation data in the TCGA cohort, normal sample sequencing data in the GTEx project, and cell line expression profile data in the CCLE database. RESULTS: Survival analyses including the Cox proportional-hazards model and log-rank test revealed the poor prognostic role of NCBP2 in multiple tumors. We further validated the oncogenic ability of NCBP2 in prostate cancer cell lines, organoids and tumor-bearing mice. A negative correlation was observed between NCBP2 expression and immune score by the ESTIMATE algorithm. Simultaneously, the NCBP2-induced immunosuppressive microenvironment might be related to the decline in CD8+T cells and the increase in regulatory T cells and neutrophils, examined by flow cytometry experiments for NCBP2 overexpressed tumor-bearing mice. CONCLUSION: This research offered strong proof supporting NCBP2 as the prognostic marker and the therapeutic target in the future.

3.
JCO Precis Oncol ; 8: e2400111, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38976830

ABSTRACT

PURPOSE: Simultaneous profiling of cell-free DNA (cfDNA) methylation and fragmentation features to improve the performance of cfDNA-based cancer detection is technically challenging. We developed a method to comprehensively analyze multimodal cfDNA genomic features for more sensitive esophageal squamous cell carcinoma (ESCC) detection. MATERIALS AND METHODS: Enzymatic conversion-mediated whole-methylome sequencing was applied to plasma cfDNA samples extracted from 168 patients with ESCC and 251 noncancer controls. ESCC characteristic cfDNA methylation, fragmentation, and copy number signatures were analyzed both across the genome and at accessible cis-regulatory DNA elements. To distinguish ESCC from noncancer samples, a first-layer classifier was developed for each feature type, the prediction results of which were incorporated to construct the second-layer ensemble model. RESULTS: ESCC plasma genome displayed global hypomethylation, altered fragmentation size, and chromosomal copy number alteration. Methylation and fragmentation changes at cancer tissue-specific accessible cis-regulatory DNA elements were also observed in ESCC plasma. By integrating multimodal genomic features for ESCC detection, the ensemble model showed improved performance over individual modalities. In the training cohort with a specificity of 99.2%, the detection sensitivity was 81.0% for all stages and 70.0% for stage 0-II. Consistent performance was observed in the test cohort with a specificity of 98.4%, an all-stage sensitivity of 79.8%, and a stage 0-II sensitivity of 69.0%. The performance of the classifier was associated with the disease stage, irrespective of clinical covariates. CONCLUSION: This study comprehensively profiles the epigenomic landscape of ESCC plasma and provides a novel noninvasive and sensitive ESCC detection approach with genome-scale multimodal analysis.


Subject(s)
Cell-Free Nucleic Acids , DNA Methylation , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/blood , Esophageal Neoplasms/diagnosis , Male , Female , Middle Aged , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Esophageal Squamous Cell Carcinoma/genetics , Aged , Epigenome
4.
Brain ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001866

ABSTRACT

Mitochondrial and synaptic dysfunction are pathological features of brain aging and cognitive decline. Synaptic mitochondria are vital for meeting the high energy demands of synaptic transmission. However, little is known about the link between age-related metabolic changes and the integrity of synaptic mitochondria. To this end, we investigate the mechanisms of advanced glycation endproducts (AGEs)-mediated mitochondrial and synaptic stress and evaluate the strategies to eliminate these toxic metabolites. Using aged brain and novel transgenic mice overexpressing neuronal glyoxalase 1 (GLO1), we comprehensively analyzed alterations in accumulation/buildup of AGEs and related metabolites in synaptic mitochondria and the association of AGE levels with mitochondrial function. We demonstrate for the first time that synaptic mitochondria are an early and major target of AGEs and the related toxic metabolite methylglyoxal (MG), a precursor of AGEs. MG/AGEs-insulted synaptic mitochondria exhibit deterioration of mitochondrial and synaptic function. Such accumulation of MG/AGEs positively correlated with mitochondrial perturbation and oxidative stress in aging brain. Importantly, clearance of AGEs-related metabolites by enhancing neuronal GLO1, a key enzyme for detoxification/of AGEs, reduces synaptic mitochondrial AGEs accumulation and improves mitochondrial and cognitive function in aging and AGE-challenged mice. Furthermore, we evaluated the direct effect of AGEs on synaptic function in hippocampal neurons in live brain slices as an ex-vivo model and in vitro cultured hippocampal neurons by recording long-term potentiation (LTP) and measuring spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs). Neuronal GLO1 rescues deficits in AGEs-induced synaptic plasticity and transmission by fully recovery of decline in LTP or frequency of mEPSC. These studies explore crosstalk between synaptic mitochondrial dysfunction and age-related metabolic changes relevant to brain aging and cognitive decline. Synaptic mitochondria are particularly susceptible to AGEs-induced damage, highlighting the central importance of synaptic mitochondrial dysfunction in synaptic degeneration in age-related cognitive decline. Thus, augmenting GLO1 function to scavenge toxic metabolites represents a therapeutic approach to reduce age-related AGEs accumulation and to improve mitochondrial function and learning and memory.

6.
Materials (Basel) ; 17(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998234

ABSTRACT

Three-dimensional braided composites (3D-BCs) have better specific strength and stiffness than two-dimensional planar composites (2D-PCs), so they are widely used in modern industrial fields. In this paper, two kinds of 3D four-directional braided composites (3D4d-BCs) with different braided angles (15°, denoted as H15, and 30°, denoted as H30) were subjected to hydrothermal aging treatments, low-velocity impact (LVI) tests, and compression after impact (CAI) tests under different conditions. This study systematically studied the hygroscopic behavior and the effect of hygrothermal aging on the mechanical properties of 3D4d-BC. The results show that higher temperatures and smaller weaving angles can significantly improve the moisture absorption equilibrium content. When the moisture absorption content is balanced, the energy absorption effect of 3D4d-BC is better, but the integrity and residual compression rate will be reduced. Due to the intervention of oxygen molecules, the interface properties between the matrix and the composite material will be reduced, so the compressive strength will be further reduced. In the LVI test, the peak impact load of H15 is low. In CAI tests, the failure of H15 mainly occurs on the side, and the failure form is buckling failure. The main failure direction of H30 is 45° shear failure.

7.
NPJ Precis Oncol ; 8(1): 99, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831114

ABSTRACT

Fetal adenocarcinoma of the lung (FLAC) is a rare form of lung adenocarcinoma and was divided into high-grade (H-FLAC) and low-grade (L-FLAC) subtypes. Despite the existence of some small case series studies, a comprehensive multi-omics study of FLAC has yet to be undertaken. In this study, we depicted the multi-omics landscapes of this rare lung cancer type by performing multi-regional sampling on 20 FLAC cases. A comparison of multi-omics profiles revealed significant differences between H-FLAC and L-FLAC in a multi-omic landscape. Two subtypes also showed distinct relationships between multi-layer intratumor heterogeneity (ITH). We discovered that a lower genetic ITH was significantly associated with worse recurrence-free survival and overall survival in FLAC patients, whereas higher methylation ITH in H-FLAC patients suggested a short survival. Our findings highlight the complex interplay between genetic and transcriptional heterogeneity in FLAC and suggest that different types of ITH may have distinct implications for patient prognosis.

8.
Cancer Cell Int ; 24(1): 208, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872157

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) patients have a dismal survival rate because of cancer metastasis and drug resistance. The study aims to identify the genes that concurrently modulate EMT, metastasis and EGFR-TKI resistance, and to investigate the underlying regulatory mechanisms. METHODS: Cox regression and Kaplan-Meier analyses were applied to identify prognostic oncogenes in LUAD. Gene set enrichment analysis (GSEA) was used to indicate the biological functions of the gene. Wound-healing and Transwell assays were used to detect migratory and invasive ability. EGFR-TKI sensitivity was evaluated by assessing the proliferation, clonogenic survival and metastatic capability of cancer cells with treatment with gefitinib. Methylated RNA immunoprecipitation (MeRIP) and RNA immunoprecipitation (RIP) analyses established the level of m6A modification present on the target gene and the protein's capability to interact with RNA, respectively. Single-sample gene set enrichment (ssGSEA) algorithm used to investigate levels of immune cell infiltration. RESULTS: Our study identified dual-specificity phosphatase 5 (DUSP5) as a novel and powerful predictor of adverse outcomes for LUAD by using public datasets. Functional enrichment analysis found that DUSP5 was positively enriched in EMT and transforming growth factor-beta (TGF-ß) signaling pathway, a prevailing pathway involved in the induction of EMT. As expected, DUSP5 knockdown suppressed EMT via inhibiting the canonical TGF-ß/Smad signaling pathway in in vitro experiments. Consistently, knockdown of DUSP5 was first found to inhibit migratory ability and invasiveness of LUAD cells in in vitro and prevent lung metastasis in in vivo. DUSP5 knockdown re-sensitized gefitinib-resistant LUAD cells to gefitinib, accompanying reversion of EMT progress. In LUAD tissue samples, we found 14 cytosine-phosphate-guanine (CpG) sites of DUSP5 that were negatively associated with DUSP5 gene expression. Importantly, 5'Azacytidine (AZA), an FDA-approved DNA methyltransferase inhibitor, restored DUSP5 expression. Moreover, RIP experiments confirmed that YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), a m6A reader protein, could bind DUSP5 mRNA. YTHDF1 promoted DUSP5 expression and the malignant phenotype of LUAD cells. In addition, the DUSP5-derived genomic model revealed the two clusters with distinguishable immune features and tumor mutational burden (TMB). CONCLUSIONS: Briefly, our study discovered DUSP5 which was regulated by epigenetic modification, might be a potential therapeutic target, especially in LUAD patients with acquired EGFR-TKI resistance.

9.
Polymers (Basel) ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891424

ABSTRACT

Resin matrix composites (RCs) have better thermal and chemical stability, so they are widely used in engineering fields. In this study, the aging process and mechanism of two different types of resin-based three-dimensional four-way braided composites (H15 and S15) under different hygrothermal aging conditions were studied. The effect of aging behavior on the mechanical properties of RCs was also studied. Three different aging conditions were studied: Case I, 40 °C Soak; Case II, 70 °C Soak; and Case III, 70 °C-85% relative humidity (RH). It was found that the hygroscopic behavior of RCs in the process of moisture-heat aging conforms to Fick's second law. Higher temperatures and humidity lead to higher water absorption. The equilibrium hygroscopic content of H15 was 1.46% (Case II), and that of S15 was 2.51% (Case II). FT-IR revealed the different hygroscopic mechanisms of H15 and S15 in terms of aging behavior. On the whole, the infiltration behavior of water molecules is mainly exhibited in the process of wet and thermal aging. At the same time, the effect of the aging process on resin matrices was observed using SEM. It was found that the aging process led to the formation of microchannels on the substrate surface of S15, and the formation of these channels was the main reason for the better moisture absorption and lower mechanical strength of S15. At the same time, this study further found that temperature and oxygen content are the core influences on post-aging strength. The LVI experiment also showed that the structural changes and deterioration effects occurring after aging reduced the strength of the studied material.

10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 799-804, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926970

ABSTRACT

OBJECTIVE: To investigate the clinical significance of bone metabolic indexes for disease assessment and curative effect monitoring in multiple myeloma (MM) bone disease (MBD) patients with different blood separation results. METHODS: A total of 134 newly diagnosed MM patients treated in Cangzhou Hospital of Integrated TCM-WM-Hebei were enrolled and divided into control group [119 cases, serum, colloid and red blood cell (RBC) from top to bottom of sample] and abnormal group (15 cases, serum, mixed layer of RBC and serum, colloid and RBC from top to bottom of sample) according to the results of blood separation. According to the imaging findings, MBD was classified into grade 0-4, grade 0-2 was mild, and grade 3-4 was severe. The MBD grade of patients in the two groups was analyzed. The curative effect of MBD patients after chemotherapy and the changes of blood separation results and bone metabolic indexes before and after treatment were evaluated. The correlation between ß2-microglobulin (MG) and bone metabolic indexes was analyzed by Pearson correlation analysis. RESULTS: In the control group, there were 69 cases of grade 0-2 and 50 cases of grade 3-4, while in the abnormal group, there were 5 cases of grade 0-2 and 10 cases of grade 3-4, the difference was statistically significant (P < 0.05). The serum ß2-MG, ß-CTX levels in abnormal group were both significantly higher than those in control group, while the levels of P1NP and osteocalcin (OC) were significantly lower (all P < 0.001). In the control group, there were 95 patients with ≥ partial response (PR) and the blood separation results were not changed, while 24 patients with 0.05). Compared with before treatment, the levels of ß-CTX and ß2-MG in the control group with unchanged blood separation results were significantly decreased (both P < 0.001), while the levels of P1NP and OC were significantly increased (P < 0.01, P < 0.001), and the level of each index in the patients transformed to abnormal blood separation result after treatment did not significantly change (P >0.05); the levels of ß-CTX and ß2-MG in the abnormal group transformed to normal blood separation result were significantly decreased (both P < 0.01), while the levels of P1NP and OC were significantly increased (P < 0.001, P < 0.01), and the level of each index in patients with unchanged blood separation results did not significantly change (P>0.05). Pearson correlation analysis showed that serum ß2-MG was positively correlated with ß-CTX (r =0.709, P < 0.001), and negatively correlated with P1NP and OC (r =-0.410,r =-0.412, both P < 0.001). CONCLUSION: MBD patients with abnormal blood separation results have higher bone disease grade and poor prognosis, which is closely related to the significant increase of bone resorption index ß-CTX level and decrease of bone formation index P1NP and OC levels, leading to more serious bone metabolic homeostasis disorder. The results of blood separation combined with the changes of bone metabolic indexes can be used as one of the comprehensive predictors of disease condition, efficacy monitoring and prognosis evaluation of MBD patients.


Subject(s)
Bone and Bones , Multiple Myeloma , Humans , Multiple Myeloma/blood , Bone and Bones/metabolism , Bone Diseases , beta 2-Microglobulin/blood , Collagen Type I/blood , Osteocalcin/blood , Male , Middle Aged
11.
Angew Chem Int Ed Engl ; : e202410699, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943043

ABSTRACT

High-throughput synthesis and screening of chemical libraries play pivotal roles in drug discovery. Click chemistry has emerged as a powerful strategy for constructing highly modular chemical libraries. However, the development of new click reactions and unlocking new click able building blocks remain exceedingly challenging. Here in , we describe a double-click strategy that enables the sequential ligation of widely available carboxylic acids and amines with fluorosulfuryl isocyanate (FSO 2 NCO) via a modular amidation/SuFEx process. This method provides facile access to chemical libraries of N-fluorosulfonyl amides (RCONHSO 2 F) and N-acylsulfamides (RCONHSO 2 NR ´ R ´´ ) in near-quantitative yields under simple and practical conditions. The robustness and efficiency of this double click strategy is showcased by the facile construction of chemical libraries in 96-well microtiter plates from a large number of carboxylic acids and amines. Preliminary biological activity screening reveals that some compound s  exhibit high antimicrobial activities against Gram-positive bacterium  S. aureus and drug-resistant MRSA (MIC up to 6.25·µg mL-1). These results provide compelling evidence for the potential application of modular click chemistry library as an enabling technology in high-throughput medicinal chemistry.

12.
World J Gastroenterol ; 30(21): 2734-2739, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38899328

ABSTRACT

In this editorial we comment on the article by Li published in the recent issue of the World Journal of Gastroenterology. We focus specifically on the application of immune checkpoint inhibitors (ICIs) and microsatellite instability (MSI) in gastric cancer (GC). The four pillars of GC management have long been considered, including surgery, chemotherapy, radiotherapy and targeted therapy. However, immunotherapy has recently emerged as a "fifth pillar", and its use is rapidly expanding. There are four principal strategies for tumor immunotherapy: ICIs, tumor vaccines, adoptive immunotherapy and nonspecific immunomodulators. Of them, ICIs are the most advanced and widespread type of cancer immunotherapy for GC. Recent breakthrough results for ICIs have paved the way to a new era of cancer immunotherapy. In particular, inhibition of the PD-1/PD-L1 axis with ICIs, including nivolumab and pembrolizumab, has emerged as a novel treatment strategy for advanced GC. Unfortunately, these therapies are sometimes associated with often subtle, potentially fatal immune-related adverse events (irAEs), including dermatitis, diarrhea, colitis, endocrinopathy, hepatotoxicity, neuropathy and pneumonitis. We must be aware of these irAEs and improve the detection of these processes to prevent inappropriate discharges, emergency department revisits, and downstream complications. Recent studies have revealed that MSI-high or mismatch- repair-deficient tumors, regardless of their primary site, have a promising response to ICIs. So, it is important to detect MSI before applying ICIs for treatment of GC.


Subject(s)
Immune Checkpoint Inhibitors , Microsatellite Instability , Stomach Neoplasms , Humans , Stomach Neoplasms/immunology , Stomach Neoplasms/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/therapy , Stomach Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Immunotherapy/methods , Immunotherapy/adverse effects , Cancer Vaccines/therapeutic use , Cancer Vaccines/adverse effects , Cancer Vaccines/immunology
13.
J Inflamm Res ; 17: 3785-3799, 2024.
Article in English | MEDLINE | ID: mdl-38895139

ABSTRACT

Background: Globally, the subsequent complications that accompany sepsis result in remarkable morbidity and mortality rates. The lung is among the vulnerable organs that incur the sepsis-linked inflammatory storm and frequently culminates into ARDS/ALI. The metformin-prescribed anti-diabetic drug has been revealed with anti-inflammatory effects in sepsis, but the underlying mechanisms remain unclear. This study aimed to ascertain metformin's effects and functions in a young mouse model of sepsis-induced ALI. Methods: Mice were randomly divided into 4 groups: sham, sham+ Met, CLP, and CLP+ Met. CLP was established as the sepsis-induced ALI model accompanied by intraperitoneal metformin treatment. At day 7, the survival state of mice was noted, including survival rate, weight, and M-CASS. Lung histological pathology and injury scores were determined by hematoxylin-eosin staining. The pulmonary coefficient was used to evaluate pulmonary edema. Furthermore, IL-1ß, CCL3, CXCL11, S100A8, S100A9 and NLRP3 expression in tissues collected from lungs were determined by qPCR, IL-1ß, IL-18, TNF-α by ELISA, caspase-1, ASC, NLRP3, P65, p-P65, GSDMD-F, GSDMD-N, IL-1ß and S100A8/A9 by Western blot. Results: The data affirmed that metformin enhanced the survival rate, lessened lung tissue injury, and diminished the expression of inflammatory factors in young mice with sepsis induced by CLP. In contrast to sham mice, the CLP mice were affirmed to manifest ALI-linked pathologies following CLP-induced sepsis. The expressions of pro-inflammatory factors, for instance, IL-1ß, IL-18, TNF-α, CXCL11, S100A8, and S100A9 are markedly enhanced by CLP, while metformin abolished this adverse effect. Western blot analyses indicated that metformin inhibited the sepsis-induced activation of GSDMD and the upregulation of S100A8/A9, NLRP3, and ASC. Conclusion: Metformin could improve the survival rate, lessen lung tissue injury, and minimize the expression of inflammatory factors in young mice with sepsis induced by CLP. Metformin reduced sepsis-induced ALI via inhibiting the NF-κB signaling pathway and inhibiting pyroptosis by the S100A8/A9-NLRP3-IL-1ß pathway.

14.
Zhen Ci Yan Jiu ; 49(6): 661-666, 2024 Jun 25.
Article in English, Chinese | MEDLINE | ID: mdl-38897811

ABSTRACT

The STRICTA checklist is the guideline for reporting clinical trials undertaken using acupuncture intervention. As an extension of the CONSORT checklist, the STRICTA checklist facilitates the reporting quality of acupuncture clinical trials. The clinical research paradigm changes along with the development of science and technology. It is crucial to ensure whether or not the existing STRICTA checklist guides the reporting clinical trials of acupuncture now and in the future as well. This paper introduces the development and the updating procedure of the STRICTA checklist, analyzes the characteristics of utility and the limitation, and proposes several suggestions on the difficulties and challenges encountered in the implementation of the STRICTA checklist of current version so as to advance the further update and improvement.


Subject(s)
Acupuncture Therapy , Checklist , Humans , Acupuncture Therapy/standards , Clinical Trials as Topic/standards , Research Design/standards
15.
Int J Surg ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905505

ABSTRACT

BACKGROUND: Video-assisted thoracoscopic (VATS) lobectomy can affect patients' pulmonary function and quality of life significantly. No optimal protocol combining patient-reported outcome-based symptom management and post-discharge rehabilitation programme has yet been established. This study aimed to assess the efficacy of a novel smartphone app designed for home-based symptom management and rehabilitation. METHODS: The app was developed based on three modules: a symptom reporting system with alerts, aerobic and respiratory training exercises, and educational material. Four core symptoms were selected based on a questionnaire survey of 201 patients and three rounds of Delphi voting by 30 experts. We screened 265 patients and randomly assigned 136 equally to the app group and usual care group. The primary outcome was pulmonary function recovery at 30 days postoperatively. Secondary outcomes included symptom burden and interference with daily living (both rated using the MD Anderson Symptom Inventory for Lung Cancer), aerobic exercise intensity, emergency department visits, app-related safety, and satisfaction with the app. FINDINGS: Of the 136 participants, 56.6% were women and their mean age was 61 years. The pulmonary function recovery ratio 1 month after surgery in the app group was significantly higher than that in the usual care group (79.32% vs. 75.73%; P=0.040). The app group also recorded significantly lower symptom burden and interference with daily living scores and higher aerobic exercise intensity after surgery than the usual care group. Thirty-two alerts were triggered in the app group. The highest pulmonary function recovery ratio and aerobic exercise intensity were recorded in those patients who triggered alerts in both groups. INTERPRETATION: Using a smartphone app is an effective approach to accelerate home-based rehabilitation after VATS lobectomy. The symptom alert mechanism of this app could optimise recovery outcomes, possibly driven by patients' increased self-awareness.

16.
Phys Chem Chem Phys ; 26(21): 15393-15404, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747115

ABSTRACT

The combustion agglomeration of nano-aluminum (nAl) powder leads to incomplete combustion, which seriously hinders its application as metal fuel. In this work, nAl@AlF3 composites were produced by coating nAl with AlF3via a facile chemical deposition method. TEM and SEM analyses indicated that the AlF3 layer was evenly coated on the surface of nAl with a thickness of 4.6-9.1 nm, thereby varying the quantity of AlF3 applied. Experimental results from combustion indicated that the prepared nAl@AlF3 composites exhibit superior combustion efficiency, a higher combustion rate, and reduced combustion agglomeration as compared to raw nAl. Contrary to the widely accepted explanation that volatilization of AlF3 hinders Al combustion agglomeration, we proved that the gas-solid reaction between nAl and AlF3 plays an important role in inhibiting the sintering of nAl particles produced. The gaseous intermediate (i.e., AlOF and HF) released from the hydrolysis of AlF3 could reduce the diffusion barrier of Al2O3 to facilitate the reaction of Al core, which enhances the combustion reaction kinetics. More importantly, these gaseous products actively participate in the reaction cycle to continuously exert their catalytic effects.

17.
Chin J Integr Med ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816638

ABSTRACT

OBJECTIVE: To evaluate the effectiveness and safety of Chinese medicine (CM) in the treatment of coronavirus disease 2019 (COVID-19) in China. METHODS: A multi-center retrospective cohort study was carried out, with cumulative CM treatment period of ⩾3 days during hospitalization as exposure. Data came from consecutive inpatients from December 19, 2019 to May 16, 2020 in 4 medical centers in Wuhan, China. After data extraction, verification and cleaning, confounding factors were adjusted by inverse probability of treatment weighting (IPTW), and the Cox proportional hazards regression model was used for statistical analysis. RESULTS: A total of 2,272 COVID-19 patients were included. There were 1,684 patients in the CM group and 588 patients in the control group. Compared with the control group, the hazard ratio (HR) for the deterioration rate in the CM group was 0.52 [95% confidence interval (CI): 0.41 to 0.64, P<0.001]. The results were consistent across patients of varying severity at admission, and the robustness of the results were confirmed by 3 sensitivity analyses. In addition, the HR for all-cause mortality in the CM group was 0.29 (95% CI: 0.19 to 0.44, P<0.001). Regarding of safety, the proportion of patients with abnormal liver function or renal function in the CM group was smaller. CONCLUSION: This real-world study indicates that the combination of a full-course CM therapy on the basic conventional treatment, may safely reduce the deterioration rate and all-cause mortality of COVID-19 patients. This result can provide the new evidence to support the current treatment of COVID-19. Additional prospective clinical trial is needed to evaluate the efficacy and safety of specific CM interventions. (Registration No. ChiCTR2200062917).

18.
J Inflamm Res ; 17: 2839-2850, 2024.
Article in English | MEDLINE | ID: mdl-38751687

ABSTRACT

Purpose: Acupoint autohemotherapy (A-AHT) has been proposed as an alternative and complementary treatment for atopic dermatitis (AD), yet the exact role of its blood component in terms of therapeutic efficacy and mechanism of action is still largely unknown. Methods: This study aimed to evaluate the therapeutic efficacies and action mechanisms of intramuscular injections of autologous whole blood (AWB) and mouse immunoglobulin G (IgG) (autologous or heterologous) at acupoints on 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse models. Serum levels of total immunoglobulin E (IgE), IgG, interleukin-10 (IL-10), and interferon-gamma (IFN-γ) were measured, as well as mRNA expression levels of Forkhead box P3 (FoxP3), IL-10 and IFN-γ in dorsal skin lesions, and IL-10+, IFN-γ+ and FoxP3+CD4+T cells in murine spleen. Results: It showed that repeated acupoint injection of AWB, autologous total IgG (purified from autologous blood in AD mice) or heterologous total IgG (purified from healthy blood in normal mice) effectively reduced the severity of AD symptoms and decreased epidermal and dermal thickness as well as mast cells in skin lesions. Additionally, AWB acupoint injection was found to upregulate FoxP3+, IL-10+ and IFN-γ+ CD4+T cells in murine spleen, suppressing the production of IgE antibodies and increasing that of IgG antibodies in the serum. Furthermore, both AWB and autologous total IgG administrations significantly elevated FoxP3 expression, mRNA levels of IL-10 and IFN-γ in dorsal skin lesions. However, acupoint injection of heterologous total IgG had no effect on regulatory T (Treg) and Th1 cells modulation. Conclusion: These findings suggest that the therapeutic effects of A-AHT on AD are mediated by IgG-induced activation of Treg cells.

19.
Chin J Integr Med ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753273

ABSTRACT

OBJECTIVE: To assess efficacy of Chinese medicine (CM) on insomnia considering characteristics of treatment based on syndrome differentiation. METHODS: A total of 116 participants aged 18 to 65 years with moderate and severe primary insomnia were randomized to the placebo (n=20) or the CM group (n=96) for a 4-week treatment and a 4-week follow-up. Three CM clinicians independently prescribed treatments for each patient based on syndromes differentiation. The primary outcome was change in total sleep time (TST) from baseline. Secondary endpoints included sleep onset latency (SOL), wake time after sleep onset (WASO), sleep efficiency, Pittsburgh Sleep Quality Index (PSQI) and CM symptoms. RESULTS: The CM group had an average 0.6 h more (95% confidence interval (CI): 0.3-0.9, P<0.001) TST and 34.1% (10.3%-58.0%, P=0.005) more patients beyond 0.5 h TST increment than that of the placebo group. PSQI was changed -3.3 (-3.8 to -2.7) in the CM group, a -2.0 (-3.2 to -0.8, P<0.001) difference from the placebo group. The CM symptom score in the CM group decreased -2.0 (-3.3 to -0.7, P=0.003) more than the placebo group. SOL and WASO changes were not significantly different between groups. The analysis of prescriptions by these clinicians revealed blood deficiency and Liver stagnation as the most common syndromes. Prescriptions for these clinicians displayed relative stability, while the herbs varied. All adverse events were mild and were not related to study treatment. CONCLUSION: CM treatment based on syndrome differentiation can increase TST and improve sleep quality of primary insomnia. It is effective and safe for primary insomnia. In future studies, the long-term efficacy validation and the exploratory of eutherapeutic clinicians' fixed herb formulas should be addressed (Registration No. NCT01613183).

20.
Nat Hum Behav ; 8(6): 1163-1176, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740988

ABSTRACT

The Han Chinese history is shaped by substantial demographic activities and sociocultural transmissions. However, it remains challenging to assess the contributions of demic and cultural diffusion to Han culture and language, primarily due to the lack of rigorous examination of genetic-linguistic congruence. Here we digitized a large-scale linguistic inventory comprising 1,018 lexical traits across 926 dialect varieties. Using phylogenetic analysis and admixture inference, we revealed a north-south gradient of lexical differences that probably resulted from historical migrations. Furthermore, we quantified extensive horizontal language transfers and pinpointed central China as a dialectal melting pot. Integrating genetic data from 30,408 Han Chinese individuals, we compared the lexical and genetic landscapes across 26 provinces. Our results support a hybrid model where demic diffusion predominantly impacts central China, while cultural diffusion and language assimilation occur in southwestern and coastal regions, respectively. This interdisciplinary study sheds light on the complex social-genetic history of the Han Chinese.


Subject(s)
Language , Linguistics , Humans , China/ethnology , Asian People/genetics , Phylogeny , Cultural Evolution , Culture , East Asian People
SELECTION OF CITATIONS
SEARCH DETAIL
...