Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 311
Filter
1.
J Hazard Mater ; 475: 134903, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38878441

ABSTRACT

Copper is one of the unavoidable heavy metals in wine production. In this study, the effects on fermentation performance and physiological metabolism of Saccharomyces cerevisiae under copper stress were investigated. EC1118 was the most copper-resistant among the six strains. The ethanol accumulation of EC1118 was 26.16-20 mg/L Cu2+, which was 1.90-3.15 times higher than that of other strains. The fermentation rate was significantly reduced by copper, and the inhibition was relieved after 4-10 days of adjustment. Metabolomic-transcriptomic analysis revealed that amino acid and nucleotide had the highest number of downregulated and upregulated differentially expressed metabolites, respectively. The metabolism of fructose and mannose was quickly affected, which then triggered the metabolism of galactose in copper stress. Pathways such as oxidative and organic acid metabolic processes were significantly affected in the early time, resulting in a significant decrease in the amount of carboxylic acids. The pathways related to protein synthesis and metabolism under copper stress, such as translation and peptide biosynthetic process, was also significantly affected. In conclusion, this study analyzed the metabolite-gene interaction network and molecular response during the alcohol fermentation of S. cerevisiae under copper stress, providing theoretical basis for addressing the influence of copper stress in wine production.


Subject(s)
Copper , Ethanol , Fermentation , Saccharomyces cerevisiae , Transcriptome , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Copper/toxicity , Ethanol/toxicity , Ethanol/metabolism , Transcriptome/drug effects , Metabolomics , Wine , Gene Expression Profiling
2.
ACS Appl Mater Interfaces ; 16(25): 32434-32444, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38861695

ABSTRACT

Supercapacitors (SCs) have received widespread attention as excellent energy storage devices, and the design of multicomponent electrode materials and the construction of ingenious structures are the keys to enhancing the performance of SCs. In this paper, MoS2 nanorods were used as the carrier structure to induce the anchoring of CoAl-LDH nanosheets and grow on the surface of nickel foam (NF) in situ, thus obtaining a uniformly distributed MoS2 nanorod@CoAl-LDH nanosheet core-shell nanoarray material (MoS2@CoAl-LDH/NF). On the one hand, the nanorod-structured MoS2 as the core provides high conductivity and support, accelerates electron transfer, and avoids agglomeration of CoAl-LDH nanosheets. On the other hand, CoAl-LDH nanosheet arrays have abundant interfacially active sites, which accelerate the electrolyte penetration and enhance the electrochemical activity. The synergistic effect of the two components and the unique core-shell nanostructure give MoS2@CoAl-LDH/NF a high capacity (14,888.8 mF cm-2 at 2 mA cm-2) and long-term cycling performance (104.4% retention after 5000 charge/discharge cycles). The integrated MoS2@CoAl-LDH/NF//AC device boasts a voltage range spanning from 0 to 1.5 V, achieving a peak energy density of 0.19 mW h cm-2 at 1.5 mW cm-2. Impressively, it maintains a capacitance retention rate of 84.6% after enduring 10,000 cycles, demonstrating exceptional durability and stability.

3.
Clin Chem Lab Med ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38860968

ABSTRACT

OBJECTIVES: Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletion and compound heterozygous mutations in survival motor neuron 1 (SMN1), with severity tied to the copy number of survival motor neuron 2 (SMN2). This study aimed to develop a rapid and comprehensive method for the diagnosis of SMA. METHODS: A total of 292 children with clinically suspected SMA and 394 family members were detected by the amplification refractory mutation system polymerase chain reaction-capillary electrophoresis (ARMS-PCR-CE) method, which targeted 19 reported mutations, and the results were compared with those in multiplex ligation-dependent probe amplification (MLPA). Individuals with identified point mutations were further confirmed by SMN1 long-range PCR and Sanger sequencing. RESULTS: A total of 202 children with SMA, 272 carriers, and 212 normal individuals were identified in this study. No difference was found in the R-value distribution of exons 7 and 8 in SMN1 and SMN2 among these cohorts, with coefficients of variation consistently below 0.08. To detect exon 7 and 8 copy numbers in SMN1 and SMN2, the ARMS-PCR-CE results were concordant with those of MLPA. Approximately 4.95 % (10/202) of the study patients had compound heterozygous mutations. CONCLUSIONS: The ARMS-PCR-CE assay is a comprehensive, rapid, and accurate diagnostic method for SMA that simultaneously detects copy numbers of exons 7 and 8 in SMN1/SMN2, as well as 19 point mutations in SMN1 and 2 enhancers in SMN2. This approach can effectively reduce the time frame for diagnosis, facilitating early intervention and preventing birth defects.

4.
PhytoKeys ; 241: 177-189, 2024.
Article in English | MEDLINE | ID: mdl-38721011

ABSTRACT

Angiopterisnodosipetiolata Ting Wang tris, H.F.Chen & Y.H.Yan, a new fern of Marattiaceae, is described and illustrated. Morphologically, A.nodosipetiolata is similar to A.chingii with more than one naked pulvinus on the stipe and numerous jointed hairs on the undersides of the mature pinnae. However, the pinnae of A.nodosipetiolata are lanceolate and can reach up to 4-6 pairs, whereas they are elliptic and occur in 2-3 pairs in A.chingii. Phylogenetic and genetic distance analysis, based on the plastid genomes, also indicates that A.nodosipetiolata is not closely related to A.chingii. Currently, there are ca. 500 mature individuals in Gulinqing Nature Reserve and we suggest A.nodosipetiolata should be categorised as an Endangered (EN) species according to the criteria of IUCN.

5.
Cell Death Discov ; 10(1): 208, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693111

ABSTRACT

La-related proteins (LARPs) regulate gene expression by binding to RNAs and exhibit critical effects on disease progression, including tumors. However, the role of LARP4B and its underlying mechanisms in the progression of hepatocellular carcinoma (HCC) remain largely unclear. In this study, we found that LARP4B expression is upregulated and correlates with poor prognosis in patients with HCC. Gain- and loss-of-function assays showed that LARP4B promotes stemness, proliferation, metastasis, and angiogenesis in vitro and in vivo. Furthermore, LARP4B inhibition enhances the antitumor effects of sorafenib and blocks the metastasis-enhancing effects of low sorafenib concentrations in HCC. Mechanistically, LARP4B expression is upregulated by METTL3-mediated N6-methyladenosine (m6A)-IGF2BP3-dependent modification in HCC. RNA- and RNA immunoprecipitation (RIP)- sequencing uncovered that LARP4B upregulates SPINK1 by binding to SPINK1 mRNA via the La motif and maintaining mRNA stability. LARP4B activates the SPINK1-mediated EGFR signaling pathway, which supports stemness, progression and sorafenib resistance in HCC. Additionally, a positive feedback loop with the LARP4B/SPINK1/p-AKT/C/EBP-ß axis is responsible for the sorafenib-therapeutic benefit of LARP4B depletion. Overall, this study demonstrated that LARP4B facilitates HCC progression, and LARP4B inhibition provides benefits to sorafenib treatment in HCC, suggesting that LARP4B might be a potential therapeutic target for HCC.

6.
Acta Pharmacol Sin ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811773

ABSTRACT

Cancer metabolic reprogramming has been considered an emerging hallmark in tumorigenesis and the antitumor immune response. Like cancer cells, immune cells within the tumor microenvironment or premetastatic niche also undergo extensive metabolic reprogramming, which profoundly impacts anti-tumor immune responses. Numerous evidence has illuminated that immunosuppressive TME and the metabolites released by tumor cells, including lactic acid, Prostaglandin E2 (PGE2), fatty acids (FAs), cholesterol, D-2-Hydroxyglutaric acid (2-HG), adenosine (ADO), and kynurenine (KYN) can contribute to CD8+ T cell dysfunction. Dynamic alterations of these metabolites between tumor cells and immune cells can similarly initiate metabolic competition in the TME, leading to nutrient deprivation and subsequent microenvironmental acidosis, which impedes immune response. This review summarizes the new landscape beyond the classical metabolic pathways in tumor cells, highlighting the pivotal role of metabolic disturbance in the immunosuppressive microenvironment, especially how nutrient deprivation in TME leads to metabolic reprogramming of CD8+ T cells. Likewise, it emphasizes the current therapeutic targets or strategies related to tumor metabolism and immune response, providing therapeutic benefits for tumor immunotherapy and drug development in the future. Cancer metabolic reprogramming has been considered an emerging hallmark in tumorigenesis and the antitumor immune response. Dynamic alterations of metabolites between tumor cells and immune cells initiate metabolic competition in the TME, leading to nutrient deprivation and subsequent microenvironmental acidosis, which impedes immune response.

7.
Hum Vaccin Immunother ; 20(1): 2343192, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38745409

ABSTRACT

To summarize the distribution of types of human papillomavirus (HPV) associated with HPV-related diseases and investigate the potential causes of high prevalence of HPV 52 and 58 by summarizing the prevalence of lineages, sub-lineages, and mutations among Chinese women. We searched PubMed, EMBASE, CNKI, and WanFang from January, 2012 to June, 2023 to identify all the eligible studies. We excluded patients who had received HPV vaccinations. Data were summarized in tables and cloud/rain maps. A total of 102 studies reporting HPV distribution and 15 studies reporting HPV52/HPV58 variants were extracted. Among Chinese women, the top five prevalent HPV types associated with cervical cancer (CC) were HPV16, 18, 58, 52, and 33. In patients with vaginal cancers and precancerous lesions, the most common HPV types were 16 and 52 followed by 58. For women with condyloma acuminatum (CA), the most common HPV types were 11 and 6. In Chinese women with HPV infection, lineage B was the most prominently identified for HPV52, and lineage A was the most common for HPV58. In addition to HPV types 16, which is prevalent worldwide, our findings revealed the unique high prevalence of HPV 52/58 among Chinese women with HPV-related diseases. HPV 52 variants were predominantly biased toward lineage B and sub-lineage B2, and HPV 58 variants were strongly biased toward lineage A and sub-lineage A1. Further investigations on the association between the high prevalent lineage and sub-lineage in HPV 52/58 and the risk of cancer risk are needed. Our findings underscore the importance of vaccination with the nine-valent HPV vaccine in China.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology , China/epidemiology , Prevalence , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/epidemiology , Papillomaviridae/genetics , Papillomaviridae/classification , Genotype , Vaginal Neoplasms/virology , Vaginal Neoplasms/epidemiology , Condylomata Acuminata/virology , Condylomata Acuminata/epidemiology
8.
Polymers (Basel) ; 16(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674992

ABSTRACT

The impact protection applications of polycarbonate (PC) products are gradually increasing. Due to the high sensitivity of PC to notches, research on notch impacts has become very important. In this paper, the impact performance of PC with two different molecular weights under different notch states was investigated. Three notch size factors, namely notch tip radius, notch angle, and notch center depth, were selected to design orthogonal experiments and research impact toughness. Subsequently, a single-factor study was conducted on the impact radius at the tip of the notch, which was the most important factor affecting the impact performance. Research shows that the brittle-ductile-transition tip radius of high-molecular-weight PC is 0.15 mm, and it has a higher impact toughness than low-molecular-weight PC during the brittle fracture process. The brittle-ductile-transition tip radius of lower molecular weight is 0.25 mm, while low-molecular-weight PC has a higher impact toughness during the ductile fracture process. The brittle and ductile fracture mechanisms of PC with different molecular weights were analyzed by observing the stress changes and cross-sectional morphology.

9.
Front Immunol ; 15: 1304888, 2024.
Article in English | MEDLINE | ID: mdl-38605947

ABSTRACT

Background: Prior research has indicated a link between psoriasis and the susceptibility to breast cancer (BC); however, a definitive causal relationship remains elusive. This study sought to elucidate the causal connection and shared underlying mechanisms between psoriasis and BC through bidirectional Mendelian randomization (MR) and bioinformatic approaches. Methods: We employed a bidirectional MR approach to examine the potential causal connection between psoriasis and BC. Genetic data pertaining to psoriasis and BC were sourced from extensive published genome-wide association studies. The inverse -variance weighted or wald ratio served as the primary method for estimating causal effects. Sensitivity analysis of the MR results was applied with multiple methods. Leveraged datasets from the Gene Expression Omnibus and the Cancer Genome Atlas repositories to identify common differentially expressed genes, shedding light on the shared mechanisms underlying these two conditions. Results: The MR analysis revealed that when considering psoriasis as an exposure factor, the incidences of BC (OR=1.027) and estrogen receptor negative (ER-) BC (OR=1.054) were higher than in the general population. When using Her2+ BC as an exposure factor, the risk of psoriasis was 0.822 times higher (OR=0.822) than in the general population. Sensitivity analysis indicated that the results were robust. Transcriptome analysis showed that CXCL13 and CCL20 were activated in both BC and psoriasis. Both diseases were also linked to neutrophil chemotaxis, the IL-17 pathway, and the chemokine pathway. Conclusion: The results suggest that psoriasis may increase the risk of BC, especially ER- BC, while reverse MR suggests a decreased risk of psoriasis in Her2+ BC. Transcriptome analysis revealed a shared mechanism between psoriasis and BC.


Subject(s)
Breast Neoplasms , Psoriasis , Humans , Female , Breast Neoplasms/genetics , Genome-Wide Association Study , Causality , Computational Biology , Mendelian Randomization Analysis , Psoriasis/genetics
10.
Front Med ; 18(1): 19-30, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38561563

ABSTRACT

The pneumonia caused by novel coronavirus SARS-CoV-2 infection in early December 2019, which was later named coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO), rapidly spread across the world. China has made extraordinary efforts to this unprecedented pandemic, put its response and control at a very high level of infectious disease management (Category B but with measures for Category A), given top priority to the people and their lives, and balanced the pandemic control and socio-economic development. After more than three years' fighting against this disease, China downgraded the management of COVID-19 to Category B infectious disease on January 8, 2023 and the WHO declared the end of public health emergency on May 5, 2023. However, the ending of pandemic does not mean that the disease is no longer a health threat. Experiences against COVID-19 from China and the whole world should be learned to prepare well for the future public health emergencies. This article gives a systematic review of the trajectory of COVID-19 development in China, summarizes the critical policy arrangements and provides evidence for the adjustment during policy making process, so as to share experiences with international community and contribute to the global health for all humanity.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Public Health , World Health Organization , China/epidemiology
11.
Mar Drugs ; 22(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667800

ABSTRACT

Two new meroterpenoids, hyrtamide A (1) and hyrfarnediol A (2), along with two known ones, 3-farnesyl-4-hydroxybenzoic acid methyl ester (3) and dictyoceratin C (4), were isolated from a South China Sea sponge Hyrtios sp. Their structures were elucidated by NMR and MS data. Compounds 2-4 exhibited weak cytotoxicity against human colorectal cancer cells (HCT-116), showing IC50 values of 41.6, 45.0, and 37.3 µM, respectively. Furthermore, compounds 3 and 4 significantly suppressed the invasion of HCT-116 cells while also downregulating the expression of vascular endothelial growth factor receptor 1 (VEGFR-1) and vimentin proteins, which are key markers associated with angiogenesis and epithelial-mesenchymal transition (EMT). Our findings suggest that compounds 3 and 4 may exert their anti-invasive effects on tumor cells by inhibiting the expression of VEGFR-1 and impeding the process of EMT.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Porifera , Terpenes , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Porifera/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Terpenes/pharmacology , Terpenes/isolation & purification , Terpenes/chemistry , Epithelial-Mesenchymal Transition/drug effects , HCT116 Cells , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vimentin/metabolism , Cell Line, Tumor , China
12.
Int J Food Sci Nutr ; 75(4): 349-368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38659110

ABSTRACT

This review aims to analyse the efficacy of dietary supplements in reducing plasma cholesterol levels. Focusing on evidence from meta-analyses of randomised controlled clinical trials, with an emphasis on potential mechanisms of action as supported by human, animal, and cell studies. Certain dietary supplements including phytosterols, berberine, viscous soluble dietary fibres, garlic supplements, soy protein, specific probiotic strains, and certain polyphenol extracts could significantly reduce plasma total and low-density lipoprotein (LDL) cholesterol levels by 3-25% in hypercholesterolemic patients depending on the type of supplement. They tended to be more effective in reducing plasma LDL cholesterol level in hypercholesterolemic individuals than in normocholesterolemic individuals. These supplements worked by various mechanisms, such as enhancing the excretion of bile acids, inhibiting the absorption of cholesterol in the intestines, increasing the expression of hepatic LDL receptors, suppressing the activity of enzymes involved in cholesterol synthesis, and activating the adenosine monophosphate-activated protein kinase signalling pathway.


Subject(s)
Anticholesteremic Agents , Cholesterol, LDL , Dietary Supplements , Hypercholesterolemia , Humans , Hypercholesterolemia/drug therapy , Hypercholesterolemia/diet therapy , Anticholesteremic Agents/pharmacology , Anticholesteremic Agents/therapeutic use , Cholesterol, LDL/blood , Cholesterol/blood , Animals , Phytosterols/pharmacology , Randomized Controlled Trials as Topic , Probiotics/pharmacology , Probiotics/therapeutic use , Dietary Fiber/pharmacology , Receptors, LDL/metabolism , Berberine/pharmacology , Berberine/therapeutic use , Garlic
13.
Plants (Basel) ; 13(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38498522

ABSTRACT

As the only aquatic lineage of Pteridaceae, Parkerioideae is distinct from many xeric-adapted species of the family and consists of the freshwater Ceratopteris species and the only mangrove ferns from the genus Acrostichum. Previous studies have shown that whole genome duplication (WGD) has occurred in Parkerioideae at least once and may have played a role in their adaptive evolution; however, more in-depth research regarding this is still required. In this study, comparative and evolutionary transcriptomics analyses were carried out to identify WGDs and explore their roles in the environmental adaptation of Parkerioideae. Three putative WGD events were identified within Parkerioideae, two of which were specific to Ceratopteris and Acrostichum, respectively. The functional enrichment analysis indicated that the lineage-specific WGD events have played a role in the adaptation of Parkerioideae to the low oxygen concentrations of aquatic habitats, as well as different aquatic environments of Ceratopteris and Acrostichum, such as the adaptation of Ceratopteris to reduced light levels and the adaptation of Acrostichum to high salinity. Positive selection analysis further provided evidence that the putative WGD events may have facilitated the adaptation of Parkerioideae to changes in habitat. Moreover, the gene family analysis indicated that the plasma membrane H+-ATPase (AHA), vacuolar H+-ATPase (VHA), and suppressor of K+ transport growth defect 1 (SKD1) may have been involved in the high salinity adaptation of Acrostichum. Our study provides new insights into the evolution and adaptations of Parkerioideae in different aquatic environments.

14.
Nano Lett ; 24(14): 4186-4193, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38545933

ABSTRACT

Achieving metal-organic frameworks (MOFs) with nonlinear optical (NLO) switching is profoundly important. Herein, the conductive MOFs Cu-TCNQ phase I (Ph-I) and phase II (Ph-II) films were prepared using the liquid-phase-epitaxial layer-by-layer spin-coating method and steam heating method, respectively. Electronic experiments showed that the Ph-II film could be changed into the Ph-I film under an applied electric field. The third-order NLO results revealed that the Ph-I film had a third-order nonlinear reverse saturation absorption (RSA) response and the Ph-II film displayed a third-order nonlinear saturation absorption (SA) response. With increases in the heating time and applied voltage, the third-order NLO response realized the reversible transition between SA and RSA. The theoretical calculations indicated that Ph-I possessed more interlayer charge transfer, resulting in a third-order nonlinear RSA response that was stronger than that of Ph-II. This work applies phase-transformed MOFs to third-order NLO switching and provides new insights into the nonlinear photoelectric applications of MOFs.

16.
J Agric Food Chem ; 72(8): 4170-4183, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38358942

ABSTRACT

Antioxidant peptides were purified from Hydrilla verticillata (Linn. f.) Royle (HVR) protein hydrolysate by ultrafiltration, gel filtration chromatography, and semipreparative reversed-phase HPLC and identified by UPLC-ESI-MS/MS. Therein, TCLGPK and TCLGER were selected to be synthesized, and they displayed desirable radical-scavenging activity to ABTS (99.20 ± 0.56-99.20 ± 0.43%), DPPH (97.32 ± 0.59-97.56 ± 0.97%), hydroxyl radical (54.32 ± 1.27-70.42 ± 2.01%), and superoxide anion (42.93 ± 1.46-52.62 ± 1.11%) at a concentration of 0.96 µmol/mL. They possessed a cytoprotective effect against H2O2-induced oxidative stress in HepG2 cells in a dose-dependent manner. 1.6 µmol/mL of the two peptides could perfectly protect HepG2 cells from H2O2-induced injury. The TCLGPK exhibited higher antioxidant activity and cytoprotective effect than TCLGER. Western blot and molecular docking results indicated that the two peptides achieved antioxidant ability and cytoprotective effect by combining with Kelch-like ECH-associated protein 1 (Keap1) to activate the Keap1-nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response elements signaling pathway, leading to the activity and expression of the related antioxidases in the pathway significantly up-regulating and the intracellular reactive oxygen species level, lipid peroxidation, and cell apoptosis rate significantly down-regulating.


Subject(s)
Antioxidants , Hydrocharitaceae , Humans , Antioxidants/chemistry , Hydrogen Peroxide/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Hydrocharitaceae/metabolism , Hep G2 Cells , Tandem Mass Spectrometry , Molecular Docking Simulation , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Peptides/chemistry , Oxidative Stress
17.
Cell Oncol (Dordr) ; 47(1): 19-35, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37713105

ABSTRACT

BACKGROUND: Ferroptosis, a newly form of regulated cell death (RCD), is characterized by iron dyshomeostasis and unrestricted lipid peroxidation. Emerging evidence depicts a pivotal role for ferroptosis in driving some pathological processes, especially in cancer. Triggering ferroptosis can suppress tumor growth and induce an anti-tumor immune response, denoting the therapeutic promises for targeting ferroptosis in the management of cancer. As an autophagic phenomenon, ferritinophagy is critical to induce ferroptosis by degradation of ferritin to release intracellular free iron. Recently, a great deal of effort has gone into designing and developing anti-cancer strategies based on targeting ferritinophagy to induce ferroptosis. CONCLUSION: This review delineates the regulatory mechanism of ferritinophagy firstly and summarizes the role of ferritinophagy-induced ferroptosis in cancer. Moreover, the strategies targeting ferritinophagy to induce ferroptosis are highlighted to unveil the therapeutic value of ferritinophagy as a target to manage cancer. Finally, the future research directions on how to cope with the challenges in developing ferritinophagy promoters into clinical therapeutics are discussed.


Subject(s)
Ferroptosis , Neoplasms , Humans , Iron/metabolism , Iron/pharmacology , Iron/therapeutic use , Ferritins/metabolism , Ferritins/therapeutic use , Neoplasms/metabolism , Autophagy
18.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5583-5591, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114151

ABSTRACT

This study investigated the effect of Suanzaoren Decoction on the expression of N-methyl-D-aspartate receptors(NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors(AMPAR) in the hippocampus and synaptic plasticity in rats with conditioned fear-induced anxiety. The effect of Suanzaoren Decoction on rat behaviors were evaluated through open field experiment, elevated plus maze experiment, and light/dark box experiment. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of glutamate(Glu) and γ-aminobutyric acid(GABA) in the rat hippocampus. Real-time fluorescence quantitative PCR(qRT-PCR) and Western blot were employed to assess the gene and protein expression of ionotropic glutamate receptors in the hippocampal region. Transmission electron microscopy was utilized to observe the changes in the ultrastructure of synaptic neurons in the hippocampal region. Long-term potentiation(LTP) detection technique was employed to record the changes in population spike(PS) amplitude in the hippocampal region of mice in each group. The behavioral results showed that compared with the model group, the Suanzaoren Decoction group effectively increased the number of entries into open arms, time spent in open arms, percentage of time spent in open arms out of total movement time, number of entries into open arms out of total entries into both arms(P<0.01), and significantly increased the time spent in the light box and the number of shuttle crossings(P<0.01). There was an increasing trend in the number of grid crossings, entries into the center grid, and time spent in the center grid, indicating a significant anxiolytic effect. ELISA results showed that compared with the model group, the Suanzaoren Decoction group exhibited significantly reduced levels of Glu, Glu/GABA ratio(P<0.01), and significantly increased levels of GABA(P<0.01) in the rat hippocampus. Furthermore, Suanzaoren Decoction significantly decreased the gene and protein expression of NMDAR(GluN2B and GluN2A) and AMPAR(GluA1 and GluA2) compared with the model group. Transmission electron microscopy results demonstrated improvements in synapses, neuronal cells, and organelles in the hippocampal region of the Suanzaoren Decoction group compared with the model group. LTP detection results showed a significant increase in the PS amplitude changes in the hippocampal region of Suanzaoren Decoction group from 5 to 35 min compared with the model group(P<0.05, P<0.01). In conclusion, Suanzaoren Decoction exhibits significant anxiolytic effects, which may be attributed to the reduction in NMDAR and AMPAR expression levels and the improvement of synaptic plasticity.


Subject(s)
Hippocampus , Receptors, Ionotropic Glutamate , Rats , Mice , Animals , Receptors, Ionotropic Glutamate/metabolism , Neuronal Plasticity , Receptors, N-Methyl-D-Aspartate/genetics , Anxiety/drug therapy , Anxiety/genetics , gamma-Aminobutyric Acid
19.
Pharmacol Res ; 198: 106996, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37972723

ABSTRACT

Breast cancer (BC) remains the foremost cause of cancer mortality globally, with neutrophils playing a critical role in its pathogenesis. As an essential tumor microenvironment (TME) component, neutrophils are emerging as pivotal factors in BC progression. Growing evidence has proved that neutrophils play a Janus- role in BC by polarizing into the anti-tumor (N1) or pro-tumor (N2) phenotype. Clinical trials are evaluating neutrophil-targeted therapies, including Reparixin (NCT02370238) and Tigatuzumab (NCT01307891); however, their clinical efficacy remains suboptimal. This review summarizes the evidence regarding the close relationship between neutrophils and BC, emphasizing the critical roles of neutrophils in regulating metabolic and immune pathways. Additionally, we summarize the existing therapeutic approaches that target neutrophils, highlighting the challenges, and affirming the rationale for continuing to explore neutrophils as a viable therapeutic target in BC management.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/metabolism , Neutrophils/metabolism , Treatment Outcome , Tumor Microenvironment , Clinical Trials as Topic
20.
Neurocase ; 29(1): 1-5, 2023.
Article in English | MEDLINE | ID: mdl-37963293

ABSTRACT

To study a case of a middle-aged male with a non-tumor-associated Epstein-Barr virus (EBV) infection associated with Anti-N-methyl-D-aspartate receptor encephalitis (NMDARE), to explore the role of EBV in the pathogenesis of anti-NMDARE. The patient was diagnosed with "Anti-NMDARE, EBV infection" by using Cerebrospinal fluid (CSF) autoimmune encephalitis profile, and Metagenomics Next-Generation Sequencing (mNGS) pathogenic microbial assays, we discuss the relationship between EBV and NMDARE by reviewed literature. EBV infection may trigger and enhance anti-NMDARE, and the higher the titer of NMDAR antibody, the more severe the clinical presentation.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Epstein-Barr Virus Infections , Hashimoto Disease , Middle Aged , Humans , Male , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/complications , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/diagnosis , Herpesvirus 4, Human , Hashimoto Disease/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...