Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.333
Filter
1.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(6): 561-566, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38991952

ABSTRACT

Although the understanding of sepsis has evolved from "sepsis 1.0" to "sepsis 3.0", and the consensus on clinical management of sepsis has been continuously updated, the incidence rate and mortality of sepsis remain high. Therefore, in-depth investigation of the pathogenesis and related influencing factors of sepsis is of great significance for revealing the nature of sepsis and improving the clinical outcome of sepsis patients. This review will focus on the key issues in the basic research of sepsis, and summarize the recent advances and challenges in this field, mainly including genetic polymorphism, microorganisms, high-mobility group box 1 (HMGB1), endothelial dysfunction, immunotherapy, and biomarkers, aiming to provide new insights for the diagnosis and treatment of sepsis.


Subject(s)
HMGB1 Protein , Sepsis , Sepsis/diagnosis , Sepsis/therapy , Humans , Biomarkers/metabolism , Immunotherapy/methods
2.
BMC Cardiovasc Disord ; 24(1): 354, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992615

ABSTRACT

BACKGROUND: Hyperlipidemia damages vascular wall and serves as a foundation for diseases such as atherosclerosis, hypertension and stiffness. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is implicated in vascular dysfunction associated with hyperlipidemia-induced vascular injury. Sodium tanshinone IIA sulfonate (STS), a well-established cardiovascular protective drug with recognized anti-inflammatory, antioxidant, and vasodilatory properties, is yet to be thoroughly investigated for its impact on vascular relaxant imbalance induced by hyperlipidemia. METHODS: In this study, we treated ApoE-knockout (ApoE-/-) mouse with STS and assessed the activation of the NLRP3 inflammasome, expression of MMP2/9, integrity of elastic fibers, and vascular constriction and relaxation. RESULTS: Our findings reveal that STS intervention effectively preserves elastic fibers, significantly restores aortic relaxation function in ApoE-/- mice, and reduces their excessive constriction. Furthermore, STS inhibits the phosphorylation of spleen tyrosine kinase (SYK), suppresses NLRP3 inflammasome activation, and reduces MMP2/9 expression. CONCLUSIONS: These results demonstrate that STS protects vascular relaxation against hyperlipidemia-induced damage through modulation of the SYK-NLRP3 inflammasome-MMP2/9 pathway. This research provides novel insights into the mechanisms underlying vascular relaxation impairment in a hyperlipidemic environment and uncovers a unique mechanism by which STS preserves vascular relaxation, offering valuable foundational research evidence for its clinical application in promoting vascular health.


Subject(s)
Disease Models, Animal , Inflammasomes , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Mice, Inbred C57BL , Mice, Knockout, ApoE , NLR Family, Pyrin Domain-Containing 3 Protein , Phenanthrenes , Signal Transduction , Syk Kinase , Vasodilation , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Syk Kinase/metabolism , Matrix Metalloproteinase 2/metabolism , Phenanthrenes/pharmacology , Male , Matrix Metalloproteinase 9/metabolism , Vasodilation/drug effects , Hyperlipidemias/drug therapy , Hyperlipidemias/physiopathology , Vasodilator Agents/pharmacology , Phosphorylation , Mice , Aorta/drug effects , Aorta/physiopathology , Aorta/metabolism , Aorta/enzymology , Apolipoproteins E
3.
Eur J Neurosci ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992988

ABSTRACT

The involvement of inwardly rectifying potassium channel 4.1 (Kir4.1) in neuropathic pain has been established. However, there is limited understanding of the downstream mechanism through which Kir4.1 contributes to orofacial neuropathic pain. The objective of this study was to examine the regulation of Kir4.1 on the expression of pannexin 3 (Panx3) in the trigeminal ganglion (TG) and the underlying mechanism in the context of orofacial neuropathic pain caused by chronic constriction injury of the infraorbital nerve (CCI-ION). The study observed a significant increase in Panx3 expression in the TG of mice with CCI-ION. Inhibition of Panx3 in the TG of CCI-ION mice resulted in alleviation of orofacial mechanical allodynia. Furthermore, conditional knockdown (CKD) of Kir4.1 in the TG of both male and female mice led to mechanical allodynia and upregulation of Panx3 expression. Conversely, overexpression of Kir4.1 decreased Panx3 levels in the TG and relieved mechanical allodynia in CCI-ION mice. In addition, silencing Kir4.1 in satellite glial cells (SGCs) decreased Panx3 expression and increased the phosphorylation of P38 MAPK. Moreover, silencing Kir4.1 in SGCs increased the levels of reactive oxygen species (ROS). The elevated phosphorylation of P38 MAPK resulting from Kir4.1 silencing was inhibited by using a superoxide scavenger known as the tempol. Silencing Panx3 in the TG in vivo attenuated the mechanical allodynia caused by Kir4.1 CKD. In conclusion, these findings suggest that the reduction of Kir4.1 promotes the expression of Panx3 by activating the ROS-P38 MAPK signalling pathway, thus contributing to the development of orofacial neuropathic pain.

4.
Article in English | MEDLINE | ID: mdl-38963922

ABSTRACT

Efficient photocatalytic solar CO2 reduction presents a challenge because visible-to-near-infrared (NIR) low-energy photons account for over 50% of solar energy. Consequently, they are unable to instigate the high-energy reaction necessary for dissociating C═O bonds in CO2. In this study, we present a novel methodology leveraging the often-underutilized photo-to-thermal (PTT) conversion. Our unique two-dimensional (2D) carbon layer-embedded Mo2C (Mo2C-Cx) MXene catalyst in black color showcases superior near-infrared (NIR) light absorption. This enables the efficient utilization of low-energy photons via the PTT conversion mechanism, thereby dramatically enhancing the rate of CO2 photoreduction. Under concentrated sunlight, the optimal Mo2C-C0.5 catalyst achieves CO2 reduction reaction rates of 12000-15000 µmol·g-1·h-1 to CO and 1000-3200 µmol·g-1·h-1 to CH4. Notably, the catalyst delivers solar-to-carbon fuel (STF) conversion efficiencies between 0.0108% to 0.0143% and the STFavg = 0.0123%, the highest recorded values under natural sunlight conditions. This innovative approach accentuates the exploitation of low-frequency, low-energy photons for the enhancement of photocatalytic CO2 reduction.

5.
Food Chem ; 458: 140252, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38964113

ABSTRACT

Ethylene plays diverse roles in post-harvest processes of horticultural crops. However, its impact and regulation mechanism on the postharvest physiological deterioration (PPD) of cassava storage roots is unknown. In this study, a notable delay in PPD of cassava storage roots was observed when ethephon was utilized as an ethylene source. Physiological analyses and quantitative acetylproteomes were employed to investigate the regulation mechanism regulating cassava PPD under ethephon treatment. Ethephon was found to enhance the reactive oxygen species (ROS) scavenging system, resulting in a significant decrease in H2O2 and malondialdehyde (MDA) content. The comprehensive acetylome analysis identified 12,095 acetylation sites on 4403 proteins. Subsequent analysis demonstrated that ethephon can regulate the acetylation levels of antioxidant enzymes and members of the energy metabolism pathways. In summary, ethephon could enhance the antioxidant properties and regulate energy metabolism pathways, leading to the delayed PPD of cassava.

6.
Mol Neurobiol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976127

ABSTRACT

Temporomandibular joint osteoarthritis (TMJOA) is a severe form of temporomandibular joint disorders (TMD), and orofacial inflammatory allodynia is one of its common symptoms which lacks effective treatment. N-methyl-D-aspartate receptor (NMDAR), particularly its subtypes GluN2A and GluN2B, along with gap junctions (GJs), are key players in the mediation of inflammatory pain. However, the precise regulatory mechanisms of GluN2A, GluN2B, and GJs in orofacial inflammatory allodynia during TMJ inflammation still remain unclear. Here, we established the TMJ inflammation model by injecting Complete Freund's adjuvant (CFA) into the TMJ and used Cre/loxp site-specific recombination system to conditionally knock out (CKO) GluN2A and GluN2B in the trigeminal ganglion (TG). Von-frey test results indicated that CFA-induced mechanical allodynia in the TMJ region was relieved in GluN2A and GluN2B deficient mice. In vivo, CFA significantly up-regulated the expression of GluN2A and GluN2B, Gjb1, Gjb2, Gjc2 and Panx3 in the TG, and GluN2A and GluN2B CKO played different roles in mediating the expression of Gjb1, Gjb2, Gjc2 and Panx3. In vitro, NMDA up-regulated the expression of Gjb1, Gjb2, Gjc2 and Panx3 in satellite glial cells (SGCs) as well as promoted the intercellular communication between SGCs, and GluN2A and GluN2B knocking down (KD) altered the expression and function differently. NMDAR regulated Gjb1 and Panx3 through ERK1/2 pathway, and mediated Gjb2 and Gjc2 through MAPK, PKA, and PKC intracellular signaling pathways. These findings shed light on the distinct functions of GluN2A and GluN2B in mediating peripheral sensitization induced by TMJ inflammation in the TG, offering potential therapeutic targets for managing orofacial inflammatory allodynia.

7.
Oncol Res ; 32(7): 1221-1229, 2024.
Article in English | MEDLINE | ID: mdl-38948025

ABSTRACT

At present, the role of many long non-coding RNAs (lncRNAs) as tumor suppressors in the formation and development of cervical cancer (CC) has been studied. However, lncRNA prostate cancer gene expression marker 1 (PCGEM1), whose high expression not only aggravates ovarian cancer but also can induce tumorigenesis and endometrial cancer progression, has not been studied in CC. The objective of this study was to investigate the expression and the underlying role of PCGEM1 in CC. The relative expression of PCGEM1 in CC cells was detected by real-time PCR. After the suppression of PCGEM1 expression by shRNA, the changes in the proliferation, migration, and invasion capacities were detected via CCK-8 assay, EdU assay, and colony formation assay wound healing assay. Transwell assay and the changes in expressions of epithelial-to-mesenchymal transition (EMT) markers were determined by western blot and immunofluorescence. The interplay among PCGEM1, miR-642a-5p, and kinesin family member 5B (KIF5B) was confirmed by bioinformatics analyses and luciferase reporter assay. Results showed that PCGEM1 expressions were up-regulated within CC cells. Cell viabilities, migration, and invasion were remarkably reduced after the suppression of PCGEM1 expression by shRNA in Hela and SiHa cells. N-cadherin was silenced, but E-cadherin expression was elevated by sh-PCGEM1. Moreover, by sponging miR-642a-5p in CC, PCGEM1 was verified as a competitive endogenous RNA (ceRNA) that modulates KIF5B levels. MiR-642a-5p down-regulation partially rescued sh-PCGEM1's inhibitory effects on cell proliferation, migration, invasion, and EMT process. In conclusion, the PCGEM1/miR-642a-5p/KIF5B signaling axis might be a novel therapeutic target in CC. This study provides a research basis and new direction for targeted therapy of CC.


Subject(s)
Cell Movement , Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Kinesins , MicroRNAs , RNA, Long Noncoding , Uterine Cervical Neoplasms , Humans , RNA, Long Noncoding/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , MicroRNAs/genetics , Female , Kinesins/genetics , Kinesins/metabolism , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics , Cell Line, Tumor , HeLa Cells , Neoplasm Invasiveness
8.
J Geriatr Cardiol ; 21(5): 523-533, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38948897

ABSTRACT

OBJECTIVES: To evaluate the predictive value of fasting plasma glucose (FPG) for in-hospital mortality in patients with acute myocardial infarction (AMI) with different glucose metabolism status. METHODS: We selected 5,308 participants with AMI from the prospective, nationwide, multicenter CAMI registry, of which 2,081 were diabetic and 3,227 were nondiabetic. Patients were divided into high FPG and low FPG groups according to the optimal cutoff values of FPG to predict in-hospital mortality for diabetic and nondiabetic cohorts, respectively. The primary endpoint was in-hospital mortality. RESULTS: Overall, 94 diabetic patients (4.5%) and 131 nondiabetic patients (4.1%) died during hospitalization, and the optimal FPG thresholds for predicting in-hospital death of the two cohorts were 13.2 mmol/L and 6.4 mmol/L, respectively. Compared with individuals who had low FPG, those with high FPG were significantly associated with higher in-hospital mortality in diabetic cohort (10.1% vs. 2.8%; odds ratio [OR] = 3.862, 95% confidence interval [CI]: 2.542-5.869) and nondiabetic cohort (7.4% vs. 1.7%; HR = 4.542, 95%CI: 3.041-6.782). After adjusting the potential confounders, this significant association was not changed. Furthermore, FPG as a continuous variable was positively associated with in-hospital mortality in single-variable and multivariable models regardless of diabetic status. Adding FPG to the original model showed a significant improvement in C-statistic and net reclassification in diabetic and nondiabetic cohorts. CONCLUSIONS: This large-scale registry indicated that there is a strong positive association between FPG and in-hospital mortality in AMI patients with and without diabetes. FPG might be useful to stratify patients with AMI.

9.
Ann Intern Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38950397

ABSTRACT

BACKGROUND: Acupuncture may improve degenerative lumbar spinal stenosis (DLSS), but evidence is insufficient. OBJECTIVE: To investigate the effect of acupuncture for DLSS. DESIGN: Multicenter randomized clinical trial. (ClinicalTrials.gov: NCT03784729). SETTING: 5 hospitals in China. PARTICIPANTS: Patients with DLSS and predominantly neurogenic claudication pain symptoms. INTERVENTION: 18 sessions of acupuncture or sham acupuncture (SA) over 6 weeks, with 24-week follow-up after treatment. MEASUREMENTS: The primary outcome was change from baseline in the modified Roland-Morris Disability Questionnaire ([RMDQ] score range, 0 to 24; minimal clinically important difference [MCID], 2 to 3). Secondary outcomes were the proportion of participants achieving minimal (30% reduction from baseline) and substantial (50% reduction from baseline) clinically meaningful improvement per the modified RMDQ. RESULTS: A total of 196 participants (98 in each group) were enrolled. The mean modified RMDQ score was 12.6 (95% CI, 11.8 to 13.4) in the acupuncture group and 12.7 (CI, 12.0 to 13.3) in the SA group at baseline, and decreased to 8.1 (CI, 7.1 to 9.1) and 9.5 (CI, 8.6 to 10.4) at 6 weeks, with an adjusted difference in mean change of -1.3 (CI, -2.6 to -0.03; P = 0.044), indicating a 43.3% greater improvement compared with SA. The between-group difference in the proportion of participants achieving minimal and substantial clinically meaningful improvement was 16.0% (CI, 1.6% to 30.4%) and 12.6% (CI, -1.0% to 26.2%) at 6 weeks. Three cases of treatment-related adverse events were reported in the acupuncture group, and 3 were reported in the SA group. All events were mild and transient. LIMITATION: The SA could produce physiologic effects. CONCLUSION: Acupuncture may relieve pain-specific disability among patients with DLSS and predominantly neurogenic claudication pain symptoms, although the difference with SA did not reach MCID. The effects may last 24 weeks after 6-week treatment. PRIMARY FUNDING SOURCE: 2019 National Administration of Traditional Chinese Medicine "Project of building evidence-based practice capacity for TCM-Project BEBPC-TCM" (NO. 2019XZZX-ZJ).

10.
J Colloid Interface Sci ; 674: 686-694, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38950467

ABSTRACT

The energy storage capacity of porous carbon materials is closely tied to their surface structure and chemical properties. However, developing an innovative and straightforward approach to synthesize yolk-shell carbon spheres (YCs) remains a great challenge till date. Herein, we prepared a series of porous nitrogen-doped yolk-shell carbon spheres (NYCs) via a "pyrolysis-capture" method. This method involves coating the resorcinol-formaldehyde (RF) resin sphere with a layer of compact silica shell induced by 2-methylimidazole (ME) catalysis to produce a confined nano-space. Based on the confined effect of compact silica shell, volatile gases emitted from the RF resin and ME during pyrolysis can not only diffuse into the pores of the RF resin but can also be captured to form an outer carbon shell. This results in the tunable structures of NYCs materials. As the pyrolysis temperature rises, the shell thickness of NYCs reduces, the pore size expands, the roughness increases, and the N/O content of surface elements is enhanced. Notably, as an electrode material used forsupercapacitors,the optimized NYCs-800 exhibits excellent performance with a capacitance of 301.2F g-1 at the current density of 1 A/g and outstanding cycling life stability of 96.1% after 10,000 cycles. These results signify that controlling the surface structure and chemical properties of NYCs materials is an effective approach for constructing advanced energy storage materials.

11.
Environ Res ; 259: 119517, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964585

ABSTRACT

This paper aims to develop a flow-through electrochemical system with a series of graphene nanoparticles loaded PbO2 reactive electrochemical membrane electrodes (GNPs-PbO2 REMs) on porous Ti substrates with pore sizes of 100, 150, 300 and 600 µm, and apply them to treat antibiotic wastewater. Among them, the GNPs-PbO2 with Ti substrate of 150 µm (Ti-150/GNPs-PbO2) had superior electrochemical degradation performance over the REMs with other pore sizes due to its smaller crystal size, larger electrochemical active specific area, lower charge-transfer impedance and larger oxygen evolution potential. Under the relatively optimized conditions of initial pH of 5, current density of 15 mA cm-2, and membrane flux of 4.20 m3 (m2·h)-1, the Ti-150/GNPs-PbO2 REM realized 99.34% of benzylpenicillin sodium (PNG) removal with an EE/O of 6.52 kWh m-3. Its excellent performance could be explained as the increased mass transfer. Then three plausible PNG degradation pathways in the flow-through electrochemical system were proposed, and great stability and safety of Ti-150/GNPs-PbO2 REM were demonstrated. Moreover, a single-pass Ti-150/GNPs-PbO2 REM system with five-modules in series was designed, which could consistently treat real antibiotic wastewater in compliance with disposal requirements of China. Thus, this study evidenced that the flow-through electrochemical system with the Ti-150/GNPs-PbO2 REM is an efficient alternative for treating antibiotic wastewater.

12.
CNS Neurosci Ther ; 30(7): e14829, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961264

ABSTRACT

AIMS: Paclitaxel (PTX) is extensively utilized in the management of diverse solid tumors, frequently resulting in paclitaxel-induced peripheral neuropathy (PIPN). The present study aimed to investigate sex differences in the behavioral manifestations and underlying pathogenesis of PIPN and search for clinically efficacious interventions. METHODS: Male and female C57BL/6 mice (5-6 weeks and 12 months, weighing 18-30 g) were intraperitoneally (i.p.) administered paclitaxel diluted in saline (NaCl 0.9%) at a dose of 2 mg/kg every other day for a total of 4 injections. Von Frey and hot plate tests were performed before and after administration to confirm the successful establishment of the PIPN model and also to evaluate the pain of PIPN and the analgesic effect of PD-L1. On day 14 after PTX administration, PD-L1 protein (10 ng/pc) was injected into the PIPN via the intrathecal (i.t.) route. To knock down TRPV1 in the spinal cord, adeno-associated virus 9 (AAV9)-Trpv1-RNAi (5 µL, 1 × 1013 vg/mL) was slowly injected via the i.t. route. Four weeks after AAV9 delivery, the downregulation of TRPV1 expression was verified by immunofluorescence staining and Western blotting. The levels of PD-L1, TRPV1 and CGRP were measured via Western blotting, RT-PCR, and immunofluorescence staining. The levels of TNF-α and IL-1ß were measured via RT-PCR. RESULTS: TRPV1 and CGRP protein and mRNA levels were higher in the spinal cords of control female mice than in those of control male mice. PTX-induced nociceptive behaviors in female PIPN mice were greater than those in male PIPN mice, as indicated by increased expression of TRPV1 and CGRP. The analgesic effects of PD-L1 on mechanical hyperalgesia and thermal sensitivity were significantly greater in female mice than in male mice, with calculated relative therapeutic levels increasing by approximately 2.717-fold and 2.303-fold, respectively. PD-L1 and CGRP were partly co-localized with TRPV1 in the dorsal horn of the mouse spinal cord. The analgesic effect of PD-L1 in PIPN mice was observed to be mediated through the downregulation of TRPV1 and CGRP expression following AAV9-mediated spinal cord specific decreased TRPV1 expression. CONCLUSIONS: PTX-induced nociceptive behaviors and the analgesic effect of PD-L1 in PIPN mice were sexually dimorphic, highlighting the significance of incorporating sex as a crucial biological factor in forthcoming mechanistic studies of PIPN and providing insights for potential sex-specific therapeutic approaches.


Subject(s)
B7-H1 Antigen , Calcitonin Gene-Related Peptide , Mice, Inbred C57BL , Paclitaxel , Peripheral Nervous System Diseases , Sex Characteristics , TRPV Cation Channels , Animals , Paclitaxel/toxicity , Male , Female , Mice , Calcitonin Gene-Related Peptide/metabolism , TRPV Cation Channels/metabolism , TRPV Cation Channels/antagonists & inhibitors , B7-H1 Antigen/metabolism , Peripheral Nervous System Diseases/chemically induced , Antineoplastic Agents, Phytogenic/toxicity , Spinal Cord/drug effects , Spinal Cord/metabolism , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/metabolism
14.
Mol Neurobiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981960

ABSTRACT

Hemorrhagic stroke is a global health problem owing to its high morbidity and mortality rates. Nicotinamide riboside is an important precursor of nicotinamide adenine dinucleotide characterized by a high bioavailability, safety profile, and robust effects on many cellular signaling processes. This study aimed to investigate the protective effects of nicotinamide riboside against collagenase-induced hemorrhagic stroke and its underlying mechanisms of action. An intracerebral hemorrhage model was constructed by stereotactically injecting collagenase into the right striatum of adult male Institute for Cancer Research mice. After 30 minutes, nicotinamide riboside was administered via the tail vein. The mice were sacrificed at different time points for assessments. Nicotinamide riboside reduced collagenase-induced hemorrhagic area, significantly reduced cerebral water content and histopathological damage, promoted neurological function recovery, and suppressed reactive oxygen species production and neuroinflammation. Nicotinamide riboside exerts neuroprotective effects against collagenase-induced intracerebral hemorrhage by inhibiting neuroinflammation and oxidative stress.

15.
Article in English | MEDLINE | ID: mdl-38955820

ABSTRACT

BACKGROUND: Gram-negative bacterial lipopolysaccharide (LPS) is a major component of inflammation and plays a key role in the pathogenesis of sepsis. According to our previous study, the expression of lipoprotein-associated phospholipase A2 (Lp-PLA2) is significantly upregulated in septic patients and is positively correlated with the severity of this disease. Herein, we investigated the potential roles of Lp-PLA2-targeting microRNAs (miRNAs) in LPS-induced inflammation in murine mononuclear macrophages (RAW264.7 cells). METHODS: In LPS-stimulated RAW264.7 cells, Lp-PLA2 was confirmed to be expressed during the inflammatory response. The function of microRNA-494-3p (miR-494-3p) in the LPS-induced inflammatory response of RAW264.7 cells was determined by the transfection of a miR-494-3p mimic or inhibitor in vitro. RESULTS: Compared to the control, LPS induced a significant increase in the Lp-PLA2 level, which was accompanied by the release of inflammatory mediators. The bioinformatics and qRT‒PCR results indicated that the miR-494-3p level was associated with Lp-PLA2 expression in the LPS-induced inflammatory response of RAW264.7 cells. Dual-luciferase reporter assay results confirmed that the 3'-UTR of Lp-PLA2 was a functional target of microRNA-494-3p. During the LPS-induced inflammatory response of RAW264.7 cells, targeting Lp-PLA2 and transfecting miR-494-3p mimics significantly upregulated the expression of miR-494-3p, leading to a reduction in the release of inflammatory factors and conferring a protective effect on LPS-stimulated RAW264.7 cells. CONCLUSION: By targeting Lp-PLA2, miR-494-3p suppresses Lp-PLA2 secretion, thereby alleviating LPS-induced inflammation, which indicates that miR-494-3p may be a potential target for sepsis treatment.

16.
Nucleic Acids Res ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979568

ABSTRACT

The remarkable success of messenger RNA (mRNA)-based vaccines has underscored their potential as a novel biotechnology platform for vaccine development and therapeutic protein delivery. However, the single-subunit RNA polymerase from bacteriophage T7 widely used for in vitro transcription is well known to generate double-stranded RNA (dsRNA) by-products that strongly stimulate the mammalian innate immune response. The dsRNA was reported to be originated from self-templated RNA extension or promoter-independent transcription. Here, we identified that the primary source of the full-length dsRNA during in vitro transcription is the DNA-terminus-initiated transcription by T7 RNA polymerase. Guanosines or cytosines at the end of DNA templates enhance the DNA-terminus-initiated transcription. Moreover, we found that aromatic residues located at position 47 in the C-helix lead to a significant reduction in the production of full-length dsRNA. As a result, the mRNA synthesized using the T7 RNA polymerase G47W mutant exhibits higher expression efficiency and lower immunogenicity compared to the mRNA produced using the wild-type T7 RNA polymerase.

17.
Sci Rep ; 14(1): 15043, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951582

ABSTRACT

Pile is a common foundation on the slope, which poses a serious threat to the construction and operation if the slope deformation and causes landslide. In this study, a model device of pile foundation on landslide was independently developed by relative displacement loading between pile and soil to explore the influence of landslide deformation on pile and analysis the soil failure rule and the deformation characteristics of pile in different stages of landslide deformation, a few model tests were completed including the relative displacement between soil and pile from 1 to 17 cm, and the pile diameter and the modulus of slide bed were also considered. The results indicated that: the evolution process of landslide deformation with pile foundation on could be divided into four stages including soil compaction, cracks growth, yield stage, and failure stage; ratios of the maximum soil pressure and bending moment growth from the soil compaction stage to the cracks growth stage to the total growth in these four stages are both exceeding 60%; the soil pressure increases with the increase of pile diameter and sliding bed modulus. Therefore, it is best to effectively monitor and control the landslide in the initial soil compression stage that in soil compaction stage and methods such as increasing pile foundations or reinforcing the sliding bed can be used for protection.

18.
Int J Hypertens ; 2024: 4763189, 2024.
Article in English | MEDLINE | ID: mdl-38957519

ABSTRACT

Background: Ouabain, a Na+, K+-ATPase inhibitor, is elevated in hypertensive patients. Evidence suggests ouabain contributes to hypertension mainly through activation of the sympathetic nervous system (SNS). Renal nerves play a vital role in the regulation of SNS activity, so we hypothesize that renal denervation may attenuate the development of ouabain-induced hypertension. Methods and Results: Forty Sprague-Dawley rats were divided into following groups (n = 10 each): control group (sham surgery plus intraperitoneal saline injection), RDN group (renal denervation (RDN) plus intraperitoneal saline injection), ouabain group (sham surgery plus intraperitoneal ouabain injection), and ouabain + RDN group (RDN plus intraperitoneal ouabain injection). After eight weeks, compared with the control group, rats in the ouabain group exhibited elevated blood pressure (P < 0.05), increased plasma epinephrine, norepinephrine, angiotensin II, and aldosterone levels (P < 0.05). These indexes could be significantly ameliorated by RDN. RDN also reduced the thickening of aortic tunica media and downregulated the expression of proliferating cell nuclear antigen (PCNA) in the thoracic aorta induced by ouabain. Masson staining and echocardiography showed that myocardial fibrosis and increased left ventricular mass in the ouabain group could be attenuated by RDN. Conclusions: The present study reveals that renal nerves play an important role in the development of ouabain-induced hypertension. RDN could inhibit the pressor effect and the myocardial remodeling induced by ouabain potentially via inhibiting catecholamine release and vascular smooth muscle cell proliferation. Clinical studies are needed to explore whether RDN may exhibit better antihypertensive effects on hypertensive patients with high plasma ouabain levels as compared to those with normal plasma ouabain levels.

19.
Front Pharmacol ; 15: 1399460, 2024.
Article in English | MEDLINE | ID: mdl-38983920

ABSTRACT

Herb compatibility is the soul of traditional Chinese Medicine prescriptions. Coptidis rhizoma (CR) (Coptis chinensis Franch., Coptis deltoidea C.Y.Cheng et Hsiao, or Coptis teeta Wall.; family Ranunculaceae), is a well-known herb. The bitter and cold nature of CR can irritate the spleen and stomach, and certain ingredients in CR may trigger allergic reactions. Herb combinations can help alleviate the side effects caused by CR. Through data analysis and literature research, there are many herbs combined with CR have a high frequency, but only a few are currently used as formulae in clinical practice. The results showed that these six herb pairs are usually widely studied or used as prescriptions in the clinic. This paper describes the six herb pairs from the key traditional uses, changes in bioactive constituents, and compatibility effects, especially with Euodiae fructus (family Rutaceae), Scutellariae radix (family Lamiaceae), Magnoliae Officinalis cortex (family Magnoliaceae), Glycyrrhizae radix et rhizoma (family Fabaceae), Ginseng radix et rhizoma (family Araliaceae), and Aucklandiae radix (family Asteraceae), and found that herbs are more effective when used in combination. Therefore, it is feasible to establish some methods to study herb pairs comprehensively from different perspectives. This paper aims to provide the latest and most comprehensive information on the six herb pairs and summarize the pattern of CR compatibility effects. It aims to attract more attention, and further experimental studies will be conducted to investigate and evaluate the effects of herb pairs containing CR. These data can also provide valuable references for researchers and also provide more possibilities for future applications in clinical practice and new drug development.

20.
Sci Rep ; 14(1): 15825, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982185

ABSTRACT

Silicon nitride (Si3N4) is a bioceramic material with potential applications. Customization and high reliability are the foundation for the widespread application of Si3N4 bioceramics. This study constructed a new microwave heating structure and successfully prepared 3D printed dense Si3N4 materials, overcoming the adverse effects of a large amount of 3D printed organic forming agents on degreasing and sintering processes, further improving the comprehensive performance of Si3N4 materials. Compared with control materials, the 3D printed Si3N4 materials by microwave sintering have the best mechanical performance: bending strength is 928 MPa, fracture toughness is 9.61 MPa·m1/2. Meanwhile, it has the best biocompatibility and antibacterial properties, and cells exhibit the best activity on the material surface. Research has shown that the excellent mechanical performance and biological activity of materials are mainly related to the high-quality degreasing, high cleanliness sintering environment, and high-quality liquid-phase sintering of materials in microwave environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...