Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Plant Methods ; 18(1): 52, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35443667

ABSTRACT

BACKGROUND: Anthracnose of Camellia oleifera is a very destructive disease that commonly occurs in the Camellia oleifera industry, which severely restricts the development of the Camellia oleifera industry. In the early stage of the Camellia oleifera suffering from anthracnose, only the diseased parts of the tree need to be repaired in time. With the aggravation of the disease, the diseased branches need to be eradicated, and severely diseased plants should be cut down in time. At present, aiming at the problems of complex experiments and low accuracy in detecting the degree of anthracnose of Camellia oleifera, a method is proposed to detect the degree of anthracnose of Camellia oleifera leaves by using terahertz spectroscopy (THz) combined with laser-induced breakdown spectroscopy (LIBS), so as to realize the rapid, efficient, non-destructive and high-precision determination of the degree of anthracnose of Camellia oleifera. RESULTS: Mn, Ca, Ca II, Fe and other elements in the LIBS spectrum of healthy and infected Camellia oleifera leaves with different degrees of anthracnose are significantly different, and the Terahertz absorption spectra of healthy Camellia oleifera leaves, and Camellia oleifera leaves with different degrees of anthracnose there are also significant differences. Partial least squares discriminant analysis (PLS-DA), support vector machine (SVM), and linear discriminant analysis (LDA) are used to establish the fusion spectrum anthracnose classification model of Camellia oleifera. Among them, the Root mean square error of prediction (RMSEP) and the prediction determination coefficient R2p of THz-LIBS-CARS-PLS-DA of prediction set are 0.110 and 0.995 respectively, and the misjudgment rate is 1.03%; The accuracy of the modeling set of THz (CARS)-LIBS (CARS)-SVM is 100%, and the accuracy of prediction set is 100%, after preprocessing of the multivariate scattering correction (MSC), the accuracy of the THz-LIBS-MSC-CARS modeling set is 100%, and the accuracy of prediction set is 100%; The accuracy rate of THz-LIBS-MSC-CARS-LDA of modeling set is 98.98%, and the accuracy rate of the prediction set is 96.87%. CONCLUSION: The experimental results show that: the SVM model has higher qualitative analysis accuracy and is more stable than the PLS-DA and LDA models. The results showed that: the THz spectrum combined with the LIBS spectrum could be used to separate healthy Camellia oleifera leaves from various grades of anthracnose Camellia oleifera leaves non-destructively, quickly and accurately.

2.
Article in English | WPRIM (Western Pacific) | ID: wpr-316359

ABSTRACT

To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibration techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way.


Subject(s)
Algorithms , Computer Simulation , Food Analysis , Methods , Fruit , Chemistry , Classification , Hydrogen-Ion Concentration , Least-Squares Analysis , Malus , Chemistry , Classification , Models, Chemical , Models, Statistical , Numerical Analysis, Computer-Assisted , Principal Component Analysis , Regression Analysis , Reproducibility of Results , Sensitivity and Specificity , Spectroscopy, Fourier Transform Infrared , Methods
SELECTION OF CITATIONS
SEARCH DETAIL