Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (136)2018 06 16.
Article in English | MEDLINE | ID: mdl-29985319

ABSTRACT

Maize is an important grain crop in the United States and worldwide. However, maize grain must be processed prior to human consumption. Furthermore, whole grain composition and processing characteristics vary among maize hybrids and can impact the quality of the final processed product. Therefore, in order to produce healthier processed food products from maize, it is necessary to know how to optimize processing parameters for particular sets of germplasm to account for these differences in grain composition and processing characteristics. This includes a better understanding of how current processing techniques impact the nutritional quality of the final processed food product. Here, we describe a microscale protocol that both simulates the processing pipeline to produce cornflakes from large flaking grits and allows for the processing of multiple grain samples simultaneously. The flaking grits, the intermediate processed products, or final processed product, as well as the corn grain itself, can be analyzed for nutritional content as part of a high-throughput analytical pipeline. This procedure was developed specifically for incorporation into a maize breeding research program, and it can be modified for other grain crops. We provide an example of the analysis of insoluble-bound ferulic acid and p-coumaric acid content in maize. Samples were taken at five different processing stages. We demonstrate that sampling can take place at multiple stages during microscale processing, that the processing technique can be utilized in the context of a specialized maize breeding program, and that, in our example, most of the nutritional content was lost during food product processing.


Subject(s)
Food Handling/methods , Nutritive Value/physiology , Zea mays/chemistry , Humans
2.
J Agric Food Chem ; 66(13): 3378-3385, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29547690

ABSTRACT

The notion that many nutrients and beneficial phytochemicals in maize are lost due to food product processing is common, but this has not been studied in detail for the phenolic acids. Information regarding changes in phenolic acid content throughout processing is highly valuable because some phenolic acids are chemopreventive agents of aging-related diseases. It is unknown when and why these changes in phenolic acid content might occur during processing, whether some maize genotypes might be more resistant to processing induced changes in phenolic acid content than other genotypes, or if processing affects the bioavailability of phenolic acids in maize-based food products. For this study, a laboratory-scale processing protocol was developed and used to process whole maize kernels into toasted cornflakes. High-throughput microscale wet-lab analyses were applied to determine the concentrations of soluble and insoluble-bound phenolic acids in samples of grain, three intermediate processing stages, and toasted cornflakes obtained from 12 ex-PVP maize inbreds and seven hybrids. In the grain, insoluble-bound ferulic acid was the most common phenolic acid, followed by insoluble-bound p-coumaric acid and soluble cinnamic acid, a precursor to the phenolic acids. Notably, the ferulic acid content was approximately 1950 µg/g, more than ten-times the concentration of many fruits and vegetables. Processing reduced the content of the phenolic acids regardless of the genotype. Most changes occurred during dry milling due to the removal of the bran. The concentration of bioavailable soluble ferulic and p-coumaric acid increased negligibly due to thermal stresses. Therefore, the current dry milling based processing techniques used to manufacture many maize-based foods, including breakfast cereals, are not conducive for increasing the content of bioavailable phenolics in processed maize food products. This suggests that while maize is an excellent source of phenolics, alternative or complementary processing methods must be developed before this nutritional resource can be utilized.


Subject(s)
Hydroxybenzoates/chemistry , Zea mays/chemistry , Cooking , Food Handling , Genotype , Hot Temperature , Seeds/chemistry , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...