Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Math Biol ; 82(1-2): 2, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33475813

ABSTRACT

This paper is concerned with a nonlinear optimization problem that naturally arises in population biology. We consider the population of a single species with logistic growth residing in a patchy environment and study the effects of dispersal and spatial heterogeneity of patches on the total population at equilibrium. Our objective is to maximize the total population by redistributing the resources among the patches under the constraint that the total amount of resources is limited. It is shown that the global maximizer can be characterized for any number of patches when the diffusion rate is either sufficiently small or large. To show this, we compute the first variation of the total population with respect to resources in the two patches case. In the case of three or more patches, we compute the asymptotic expansion of all patches by using the Taylor expansion with respect to the diffusion rate. To characterize the shape of the global maximizer, we use a recurrence relation to determine all coefficients of all patches.


Subject(s)
Ecosystem , Models, Biological , Diffusion , Population Dynamics
2.
Math Biosci Eng ; 5(2): 315-35, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18613736

ABSTRACT

This paper is concerned with an indefinite weight linear eigenvalue problem in cylindrical domains. We investigate the minimization of the positive principal eigenvalue under the constraint that the weight is bounded by a positive and a negative constant and the total weight is a fixed negative constant. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for a species to survive. Both our analysis and numerical simulations for rectangular domains indicate that there exists a threshold value such that if the total weight is below this threshold value, then the optimal favorable region is a circular-type domain at one of the four corners, and a strip at the one end with shorter edge otherwise.


Subject(s)
Mathematics , Algorithms , Biophysics/methods , Computer Simulation , Models, Biological , Models, Statistical , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...