Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Environ Contam Toxicol ; 62(2): 282-95, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21894559

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), derived from oil and fuel combustion, are ubiquitous nonpoint source pollutants that can have a number of detrimental effects on fish and wildlife. In this study, we monitored PAH exposure in outmigrant juvenile Chinook salmon from the Lower Columbia River to evaluate the risk that these contaminants might pose to the health and recovery of threatened and endangered salmonids. Juvenile Chinook salmon (Oncorhynchus tshawytscha) were collected by beach seine from five sites in the Lower Columbia River from Bonneville Dam to the mouth of the estuary (Warrendale, the Willamette-Columbia Confluence, Columbia City, Beaver Army Terminal, and Point Adams) and from a site in the Lower Willamette near downtown Portland (Morrison Street Bridge). Sediment samples were also collected at the same sites. Concentrations of PAHs in sediment samples were relatively low at all sites with average total PAH concentrations <1000 ng/g dry weight (wt.). However, we found PAHs in stomach contents of salmon from all sites at concentrations ranging from <100 to >10,000 ng/g wet wt. Metabolites of low and high molecular-weight PAHs were also detected in bile of salmon from all sites; for metabolites fluorescing at phenanthrene (PHN) wavelengths, concentrations ranged from 1.1 to 6.0 µg/mg bile protein. Levels of PAHs in stomach contents and PAH metabolites in bile were highest in salmon from the Morrison Street Bridge site in Portland and the Willamette-Columbia Confluence, Columbia City, and Beaver Army Terminal sites. Mean PAH concentrations measured in some stomach content samples from the Columbia City, Beaver Army Terminal, and Morrison Street Bridge sites were near the threshold concentration (approximately 7200-7600 ng/g wet wt.) associated with variability and immune dysfunction in juvenile salmonids (Meador et al., Can J Fish Aquat Sci 63:2364-2376, 2006; Bravo et al., Environ Toxicol Chem 30:704-714, 2011). Mean levels of biliary fluorescent aromatic compounds (FACs)-PHN in juvenile Chinook collected at the Morrison Street Bridge site in Portland, at the Confluence and Columbia City sites, and at the Beaver Army Terminal site were at or above a threshold effect concentration of 2 µg/mg protein for FACs-PHN linked to growth impairment, altered energetics, and reproductive effects (Meador et al., Environ Toxicol Chem 27(4):845-853, 2008). These findings suggest that PAHs in the food chain are a potential source of injury to juvenile salmon in the Lower Columbia and Lower Willamette rivers.


Subject(s)
Phenanthrenes/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Rivers/chemistry , Salmon/metabolism , Water Pollutants, Chemical/toxicity , Animals , Bile/chemistry , Ecosystem , Endangered Species , Environmental Monitoring/methods , Geologic Sediments/chemistry , Oregon , Phenanthrenes/analysis , Risk Factors , Washington , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 409(23): 5086-100, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21937091

ABSTRACT

A three-year field study was conducted from 2006 to 2008 to monitor the spatial and temporal trends of organic pollutants in migrating juvenile Snake River spring Chinook salmon (Oncorhynchus tshawytscha) sampled from the Lower Snake and Middle Columbia River Basins. Specifically, hatchery-reared juvenile salmon were monitored as they navigated the Federal Columbia River Power System (FCRPS) by either transport barge (Barged) or remained in the river (In-River) from Lower Granite Dam to a terminal collection dam, either John Day Dam or Bonneville Dam. Levels of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine (OC) pesticides were detected in the bodies of both In-River and Barged salmon during the 2006, 2007 and 2008 outmigrating season. At the terminal dam, In-River fish had greater concentrations of persistent organic pollutants POPs than Barged salmon. Of the POPs detected, dichlorodiphenyltrichloroethanes (DDTs) were found at the greatest concentrations in the salmon bodies. These elevated lipid-normalized concentrations in the In-River fish were due to lipid depletion in all years as well as increased exposure to POPs in some years as indicated by an increase in wet weight contaminant concentrations. Salmon were also exposed to polycyclic aromatic hydrocarbons (PAHs) as indicated by the phenanthrene (PHN) signal for biliary fluorescent aromatic compounds (FACs) at the hatcheries or prior to Lower Granite Dam. There were detectable levels of biliary FACs as fish migrated downstream or were barged to the terminal dam. Therefore, the potential exists for these organic pollutants and lipid levels to cause adverse effects and should be included as one of the variables to consider when examining the effects of the FCRPS on threatened and endangered juvenile salmon.


Subject(s)
Animal Migration , Environmental Monitoring/statistics & numerical data , Environmental Pollutants/metabolism , Lipid Metabolism , Rivers , Salmon/metabolism , Animals , DDT , Halogenated Diphenyl Ethers , Hydrocarbons, Chlorinated , Phenanthrenes , Polychlorinated Biphenyls , Salmon/physiology , Washington
3.
Sci Total Environ ; 409(18): 3537-47, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21684582

ABSTRACT

Persistent organic pollutants have been associated with disease susceptibility and decreased immunity in marine mammals. Concentrations of polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), polybrominated diphenyl ethers (PBDEs), chlordanes (CHLDs), and hexachlorocyclohexane isomers (HCHs) were evaluated in terms of stage of development and likely exposure routes (in utero, suckling, fasting) in the blubber of 202 stranded and wild-caught, primarily young of the year (n=177), harbor seals (Phoca vitulina) in the central California coast. This is the first report of HCH concentrations in the blubber of California seals. Lipid normalized concentrations ranged from 200 to 330,000 ng/g for sum PCBs, 320-1,500,000 ng/g for sum DDTs, 23-63,000 ng/g for sum PBDEs, 29-29,000 ng/g for sum CHLDs, and 2-780 ng/g for sum HCHs. The highest concentrations were observed in harbor seal pups that suckled in the wild and then lost mass during the post-weaning fast. Among the pups sampled in the wild and those released from rehabilitation, there were no differences in mass, blubber depth, or percent lipid although contaminant concentrations were significantly higher in the pups which nursed in the wild. When geographic differences were evaluated in a subset of newborn animals collected near their birth locations, the ratio of sum DDTs to sum PCBs was significantly greater in samples from an area with agricultural inputs (Monterey), than one with industrial inputs (San Francisco Bay). A principal components analysis distinguished between seals from San Francisco Bay and Monterey Bay based on specific PCB and PBDE congeners and DDT metabolites. These data illustrate the important influence of life stage, nutritional status, and location on blubber contaminant levels, and thus the need to consider these factors when interpreting single sample measurements in marine mammals.


Subject(s)
Organic Chemicals/metabolism , Phoca/metabolism , Water Pollutants, Chemical/metabolism , Adipose Tissue/metabolism , Animals , California , Chlordan/metabolism , DDT/metabolism , Environmental Monitoring , Female , Halogenated Diphenyl Ethers/metabolism , Hexachlorocyclohexane/metabolism , Male , Phoca/growth & development , Polychlorinated Biphenyls/metabolism
4.
J Wildl Dis ; 47(1): 246-54, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21270017

ABSTRACT

A male neonatal Pacific harbor seal (Phoca vitulina richardsi) stranded off the coast of California, USA, was presented for rehabilitation with numerous partially haired, soft tissue masses around the mouth and in the oropharynx. Because of the extent of the lesions, the seal was humanely euthanized. Histologically, the masses consisted of subepithelial connective tissue and subcutis expanded by a proliferation of streams and bundles of spindle to stellate cells. Morphology of these cells suggested a neural origin, which was confirmed by positive immunohistochemistry for two neural markers, S-100 protein and glial fibrillary acidic protein, so the masses were diagnosed as neuroglial heterotopia. Heterotopic neuroglial tissue is a rare lesion comprised of benign mature neural tissue in an ectopic location with no connection to the central nervous system. Results of polycyclic aromatic hydrocarbon (PAH) metabolite analysis of bile indicated recent exposure to a petroleum source. Although fetal exposure to PAHs in utero can cause neurotoxicity and affect normal embryonic development, it is unknown whether gestational exposure occurred in this case.


Subject(s)
Abnormalities, Drug-Induced/veterinary , Choristoma/veterinary , Phoca , Polycyclic Aromatic Hydrocarbons/poisoning , Animals , Animals, Newborn , Choristoma/congenital , Fatal Outcome , Female , Male , Neuroglia , Pregnancy , Prenatal Exposure Delayed Effects
SELECTION OF CITATIONS
SEARCH DETAIL
...