Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 18(4): 1127-41, 2012 Jan 23.
Article in English | MEDLINE | ID: mdl-22179925

ABSTRACT

Although many organic/inorganic compounds that release nitric oxide (NO) upon photoirradiation (phototriggered caged-NOs) have been reported, their photoabsorption wavelengths mostly lie in the UV region, because X-NO bonds (X=heteroatom and metal) generally have rather strong π-bond character. Thus, it is intrinsically difficult to generate organic compounds that release NO under visible light irradiation. Herein, the structures and properties of N-pyramidal nitrosamine derivatives of 7-azabicyclo[2.2.1]heptanes that release NO under visible light irradiation are described. Bathochromic shifts of the absorptions of these nitrosamines, attributed to HOMO (n)-LUMO (π*) transitions associated with the nonplanar structure of the N-NO moiety, enable the molecules to absorb visible light, which results in N-NO bond cleavage. Thus, these compounds are innate organic caged-NOs that are uncaged by visible light.


Subject(s)
Light , Nitric Oxide/chemistry , Nitrosamines/chemistry , Cyclization , Models, Molecular , Molecular Structure
2.
Bioorg Med Chem ; 19(8): 2726-41, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21435887

ABSTRACT

Nitrosamines are potent carcinogens and toxicants in the rat and potential genotoxins in humans. They are metabolically activated by hydroxylation at an α-carbon atom with respect to the nitrosoamino group, catalyzed by cytochrome P450. However, there has been little systematic investigation of the structure-mutagenic activity relationship of N-nitrosamines. Herein, we evaluated the mutagenicity of a series of 7-azabicyclo[2.2.1]heptane N-nitrosamines and related monocyclic nitrosamines by using the Ames assay. Our results show that the N-nitrosamine functionality embedded in the bicyclic 7-azabicylo[2.2.1]heptane structure lacks mutagenicity, that is, it is inert to α-hydroxylation, which is the trigger of mutagenic events. Further, the calculated α-C-H bond dissociation energies of the bicyclic nitrosamines are larger in magnitude than those of the corresponding monocyclic nitrosamines and N-nitrosodimethylamine by as much as 20-30 kcal/mol. These results are consistent with lower α-C-H bond reactivity of the bicyclic nitrosamines. Thus, the 7-azabicyclo[2.2.1]heptane structural motif may be useful for the design of nongenotoxic nitrosamine compounds with potential biological/medicinal applications.


Subject(s)
Bridged Bicyclo Compounds/pharmacology , Heptanes/pharmacology , Mutagens , Nitrosamines/antagonists & inhibitors , Animals , Humans , Hydroxylation , Mutagenicity Tests , Nitrosamines/toxicity , Rats , Structure-Activity Relationship
3.
Chem Commun (Camb) ; (30): 3139-41, 2007 Aug 14.
Article in English | MEDLINE | ID: mdl-17653367

ABSTRACT

Photocatalytic oligomerization of fullerene in toluene-acetonitrile solution occurs efficiently via electron-transfer reactions with the photogenerated electron-transfer state of 9-mesityl-10-methylacridinium ion, followed by the radical coupling reaction between fullerene radical cation and radical anion.

SELECTION OF CITATIONS
SEARCH DETAIL
...