Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 11(29): 17865-17870, 2021 May 13.
Article in English | MEDLINE | ID: mdl-35480220

ABSTRACT

Au(i)-, Ag(i)-, and Pd(ii)-coordination-driven diverse self-assembly of an N-heterocyclic carbene (NHC)-based amphiphile was demonstrated herein. The transition metals had significant effects over the whole system, setting the self-assembly direction of the NHC-based amphiphile. More specifically, Au(i)- and Ag(i)-coordination to the NHC-based amphiphile promoted the formation of spherical and hexagonal structures, while Pd(ii)-coordination promoted the formation of cylindrical and lamellar structures.

2.
J Oleo Sci ; 69(8): 871-882, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32641614

ABSTRACT

In this study, an N-heterocyclic carbene (NHC)-based metal coordinate surfactant (MCS), NHC-Au-MCS, in which the NHC framework afforded the bonding of the Au(I) at the linkage of the hydrophilic and hydrophobic moieties, was synthesized. The structure of NHC-Au-MCS was confirmed by 1H and 13C NMR spectroscopic measurements together with elemental analysis. Matrix-assisted laser desorption/ionization (MALDI), laser desorption/ionization (LDI), and electrospray ionization mass spectrometry (ESI-MS) indicated the distinct reactivity of NHC-Au-MCS, such as the exchange of Br to Cl and the formation of a cationic Au complex, where the two NHC ligands were coordinated to an Au(I) center upon laser activation. The surface tension and dynamic light scattering (DLS) measurements revealed that the coordination of Au(I) to NHC reduced the critical micelle concentration (CMC) of NHC-Au-MCS (1.3×10-5 M), which resulted in the formation of micelles at concentrations higher than the CMC in water. We also confirmed that the surface-active Au(I) complex of NHC-Au-MCS catalyzed the hydration of 1-dodecyne to 2-dodecanone in water in the absence of an organic solvent. On the basis of the detailed mechanistic investigations regarding the reactivity of NHC-Au-MCS, we revealed that NHC-Au-MCS partially translated into Au nanoparticles (AuNPs), which facilitated alkyne hydration. These mechanistic studies were supported by UV-vis measurements, transmission electron microscopy (TEM), and LDI-MS.


Subject(s)
Alkynes/chemistry , Gold/chemistry , Heterocyclic Compounds/chemical synthesis , Metal Nanoparticles/chemistry , Methane/analogs & derivatives , Surface-Active Agents/chemical synthesis , Catalysis , Heterocyclic Compounds/chemistry , Hydrogenation , Hydrophobic and Hydrophilic Interactions , Methane/chemical synthesis , Methane/chemistry , Micelles , Surface-Active Agents/chemistry , Water
3.
J Oleo Sci ; 67(9): 1107-1115, 2018.
Article in English | MEDLINE | ID: mdl-30175766

ABSTRACT

In this study, an N-heterocyclic carbene (NHC)-based metallosurfactant (MS), NHC-PdMS, was synthesized, where Pd(II) was bound to the NHC framework via a robust Pd-carbene bond with NEt3 as a co-ligand. Surface tension measurements revealed that the critical micelle concentration (CMC) of NHC-PdMS (1.8×10-4 M) was one order of magnitude lower than that of its MS precursor (imidazolium bromide). Coordination of the MS precursor and NEt3 to Pd(II) also influenced micelle size; the hydrodynamic diameters of NHC-PdMS and the MS precursor were observed to be 25.8±5.6 nm and 2.5±0.3 nm, respectively. Furthermore, small angle X-ray scattering measurements indicated that NHC-PdMS exhibited liquid crystalline behavior above 26 wt%, with a spacing ratio of 1:2:3 for the first, second, and third Bragg peaks. To understand the role of the reactive interface, NHC-PdMS was also applied to aqueous catalytic reactions. Owing to its low CMC value, a catalytic amount of NHC-PdMS (3 mol%) provided the reactive interface, which facilitated the aqueous Mizoroki-Heck reaction of various aryl iodides and styrene in good yields (72-95%). These results suggest that MS formation results in a drastic change in selfassembling properties, which are important for the development of highly reactive chemical interfaces in water.


Subject(s)
Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis , Methane/analogs & derivatives , Palladium/chemistry , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis , Water/chemistry , Bromides/chemistry , Catalysis , Crystallography, X-Ray , Imidazoles/chemistry , Iodides/chemical synthesis , Ligands , Liquid Crystals/chemistry , Methane/chemical synthesis , Methane/chemistry , Micelles , Molecular Conformation , Organic Chemistry Phenomena , Scattering, Radiation , Styrene/chemical synthesis , Surface Tension
SELECTION OF CITATIONS
SEARCH DETAIL
...