Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(10): 106204, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36962055

ABSTRACT

Single-molecule electron sources of fullerenes driven via constant electric fields, approximately 1 nm in size, produce peculiar emission patterns, such as a cross or a two-leaf pattern. By illuminating the electron sources with femtosecond light pulses, we discovered that largely modulated emission patterns appeared from single molecules. Our simulations revealed that emission patterns, which have been an intractable question for over seven decades, represent single-molecule molecular orbitals. Furthermore, the observed modulations originated from variations of single-molecule molecular orbitals, practically achieving the subnanometric optical modulation of an electron source.

2.
Sci Rep ; 12(1): 2714, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35177727

ABSTRACT

Applying strong direct current (DC) electric fields on the apex of a sharp metallic tip, electrons can be radially emitted from the apex to vacuum. Subsequently, they magnify the nanoscopic information on the apex, which serves as a field emission microscope (FEM). When depositing molecules on such a tip, peculiar electron emission patterns such as clover leaves appear. These phenomena were first observed seventy years ago. However, the source of these emission patterns has not yet been identified owing to the limited experimental information about molecular configurations on a tip. Here, we used fullerene molecules and characterized the molecule-covered tip by an FEM. In addition to the experiments, simulations were performed to obtain optimized molecular configurations on a tip. Both results indicate that the molecules, the source of the peculiar emission patterns, appear on a molecule layer formed on the tip under strong DC electric fields. Furthermore, the simulations revealed that these molecules are mostly isolated single molecules forming single-molecule-terminated protrusions. Upon the excellent agreements in both results, we concluded that each emission pattern originates from a single molecule. Our work should pave the way to revive old-fashioned electron microscopy as a powerful tool for investigating a single molecule.

3.
Sci Rep ; 7(1): 12661, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28978914

ABSTRACT

Interference experiments with electrons in a vacuum can illuminate both the quantum and the nanoscale nature of the underlying physics. An interference experiment requires two coherent waves, which can be generated by splitting a single coherent wave using a double slit. If the slit-edge separation is larger than the coherence width at the slit, no interference appears. Here we employed variations in surface barrier at the apex of a tungsten nano-tip as slits and achieved an optically controlled double slit, where the separation and opening-and-closing of the two slits can be controlled by respectively adjusting the intensity and polarization of ultrashort laser pulses. Using this technique, we have demonstrated interference between two electron waves emitted from the tip apex, where interference has never been observed prior to this technique because of the large slit-edge separation. Our findings pave the way towards simple time-resolved electron holography on e.g. molecular adsorbates employing just a nano-tip and a screen.

4.
Sci Rep ; 6: 35877, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27786287

ABSTRACT

Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources.

5.
Phys Rev Lett ; 107(8): 087601, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21929206

ABSTRACT

Energy distribution curves of laser-induced electron pulses from a tungsten tip have been measured as a function of tip voltage and laser power. Electron emission via tunneling through and/or excitation over the surface barrier from photoexcited nonequilibrium electron distributions are clearly observed. The spectral shapes largely vary with the emission processes and are strongly affected by electron dynamics. Simulations successfully reproduce the spectra, thus allowing direct insight into the involved electron dynamics and revealing the temporal tunability of electron emission via the two experimental parameters. These results should be useful to optimize the pulse characteristics for many applications based on ultrafast laser-induced electron emission.

6.
Phys Rev Lett ; 103(25): 257603, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-20366286

ABSTRACT

We have investigated field-emission patterns from a clean tungsten tip apex induced by femtosecond laser pulses. Strongly asymmetric modulations of the field-emission intensity distributions are observed depending on the polarization of the light and the laser incidence direction relative to the azimuthal orientation of tip apex. In effect, we have realized an ultrafast pulsed field-emission source with site selectivity. Simulations of local fields on the tip apex and of electron emission patterns based on photoexcited nonequilibrium electron distributions explain our observations quantitatively.

SELECTION OF CITATIONS
SEARCH DETAIL
...