Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(15): 11122-11128, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32683860

ABSTRACT

Substitution of oxide anions (O2-) in a metal oxide for nitrogen (N3-) results in reduction of the band gap, which is attractive in heterogeneous photocatalysis; however, only a handful of two-dimensional layered perovskite oxynitrides have been reported, and thus, the structural effects of layered oxynitrides on photocatalytic activity have not been sufficiently examined. This study reports the synthesis of a Ruddlesden-Popper phase three-layer oxynitride perovskite of K2Ca2Ta3O9N·2H2O, and the photocatalytic activity is compared with an analogous two-layer perovskite, K2LaTa2O6N·1.6H2O. Topochemical ammonolysis reaction of a Dion-Jacobson phase oxide KCa2Ta3O10 at 1173 K in the presence of K2CO3 resulted in a single-phase layered perovskite, K2Ca2Ta3O9N·2H2O, which belongs to the tetragonal P4/mmm space group, as demonstrated by synchrotron X-ray diffraction, scanning transmission electron microscopy measurements, and elemental analysis. The synthesized K2Ca2Ta3O9N·2H2O has an absorption edge at around 460 nm, with an estimated band gap of ca. 2.7 eV. K2Ca2Ta3O9N·2H2O modified with a Pt cocatalyst generated H2 from an aqueous solution containing a dissolved NaI as a reversible electron donor under visible light (λ > 400 nm) with no noticeable change in the crystal structure and light absorption properties. However, the H2 evolution activity of K2Ca2Ta3O9N·2H2O was an order of magnitude lower than that of K2LaTa2O6N·1.6H2O. Femtosecond transient absorption spectroscopy revealed that the lifetime of photogenerated mobile electrons in K2Ca2Ta3O9N·2H2O was shorter than that in K2LaTa2O6N·1.6H2O, which could explain the low photocatalytic activity of K2Ca2Ta3O9N·2H2O.

2.
J Am Chem Soc ; 142(18): 8412-8420, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32282192

ABSTRACT

Sensitization of a wide-gap oxide semiconductor with a visible-light-absorbing dye has been studied for decades as a means of producing H2 from water. However, efficient overall water splitting using a dye-sensitized oxide photocatalyst has remained an unmet challenge. Here we demonstrate visible-light-driven overall water splitting into H2 and O2 using HCa2Nb3O10 nanosheets sensitized by a Ru(II) tris-diimine type photosensitizer, in combination with a WO3-based water oxidation photocatalyst and a triiodide/iodide redox couple. With the use of Pt-intercalated HCa2Nb3O10 nanosheets further modified with amorphous Al2O3 clusters as the H2 evolution component, the dye-based turnover number and frequency for H2 evolution reached 4580 and 1960 h-1, respectively. The apparent quantum yield for overall water splitting using 420 nm light was 2.4%, by far the highest among dye-sensitized overall water splitting systems reported to date. The present work clearly shows that a carefully designed dye/oxide hybrid has great potential for photocatalytic H2 production, and represents a significant leap forward in the development of solar-driven water splitting systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...