Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cryobiology ; 100: 90-95, 2021 06.
Article in English | MEDLINE | ID: mdl-33757759

ABSTRACT

Cryopreservation of pancreatic islets can overcome the severe shortage of islet donors in clinical islet transplantation, but the impaired quality of post-warm islets need improvement. This present study was conducted to investigate whether the pre- or post-treatment of rat islets with liver decellularized matrix (LDM) for vitrification can improve the viability (FDA/PI double staining) and the functionality (glucose-stimulated insulin secretion [GSIS] assay). Rat LDM was prepared by high-hydrostatic pressure, lyophilization, and re-suspension in saline. Co-culturing of isolated islets with 0 (control), 30, 60, or 90 µg/ml LDM for 24 h resulted in the comparable viability among the 4 groups (98.7-99.6%) and the higher insulin secretion potential in 30 and 60 µg/ml LDM treatment groups than the control group (stimulation index [SI]: 12.1 and 12.7, respectively, vs. 6.5 in the control group, P < 0.05). When the islets co-cultured with 60 µg/ml LDM were vitrified-warmed on a nylon mesh cryodevice, the viability and the GSIS of the post-warm islets were not improved. Post-treatment of vitrified-warmed islets with 60 µg/ml LDM during the recovery culture for 12 h resulted in the comparable clearance of degenerating cell debris from the post-warm islets, while their insulin secretion potential was improved (SI: 5.0 vs. 3.5 in the control group, P < 0.05). These findings indicate that the components in LDM can enhance the insulin secretion potential of rat islets suffering damage by enzymatic stress during the islet isolation process or by cryoinjuries during the vitrification-warming process.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Cryopreservation/methods , Insulin , Liver , Rats , Vitrification
2.
Tissue Eng Part C Methods ; 26(12): 608-616, 2020 12.
Article in English | MEDLINE | ID: mdl-33164701

ABSTRACT

Porous materials containing cells-prepared via cell seeding on scaffolds or gelation of cell-containing solutions-have been widely studied to investigate tissue regeneration and three-dimensional cultures. However, these methods cannot introduce cells into porous materials that have low water absorption or scaffolds that require cytotoxic solvents or processes for their production. In this study, first, three different impregnation treatments conditions (vacuum, pressure, and vacuum pressure impregnation: VPI) were applied to cell suspensions to evaluate the effect of each treatment on cells. Following all three treatments, fibroblasts adhered to the cell culture dish and proliferated in the same manner as untreated cells, which confirmed that the three impregnation treatments did not affect cell function. Second, cells were introduced into a poly-l-lactic acid (PLA) scaffold, which has low water absorption, using the same impregnation treatments. The PLA scaffolds subjected to the three impregnation treatments that exhibited a significantly greater amount of DNA than those subjected to immersion treatments and showed increasing amounts of DNA in the order vacuum treatment > VPI treatment > pressure treatment. Furthermore, the amount of DNA in the vacuum-treated and VPI-treated PLA scaffolds increased on the first, third, and fifth days of culture, and it was confirmed that the cells introduced into the PLA scaffolds proliferated. These results suggest that vacuum and VPI treatments may be useful methods for introducing cells into porous materials.


Subject(s)
Polyesters , Tissue Scaffolds , Cell Culture Techniques , Porosity
3.
Tissue Eng Part C Methods ; 25(12): 742-747, 2019 12.
Article in English | MEDLINE | ID: mdl-31760880

ABSTRACT

Composite scaffolds are made by various methods, such as copolymerization, freeze gelation, and thermally induced phase separation, which can compound materials with different properties using solvents and heat. However, it is difficult to compound solvents and heat-sensitive materials such as natural polymers. In this study, we investigated a vacuum pressure impregnation (VPI) method for creating a composite of natural polymers. A collagen solution could not be introduced into a poly (l-lactide) (PLA) porous material using an immersing treatment, but it is possible using the VPI method. The resulting PLA-collagen composite scaffold had greater water adsorption and degradation than a PLA scaffold. These results indicate that VPI may be a promising method for creating composites of natural materials. Impact Statement This is the development of a method for introducing cells into a completed porous material in a short time. This technology is expected to be applied to tissue regeneration and 3D culture.


Subject(s)
Collagen/chemistry , Materials Testing , Polyesters/chemistry , Tissue Scaffolds/chemistry , Animals , Cell Line , Fibroblasts , Mice , Porosity , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...