Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 7: 12401, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27488831

ABSTRACT

A vortex ring is a torus-shaped fluidic vortex. During its formation, the fluid experiences a rich variety of intriguing geometrical intermediates from spherical to toroidal. Here we show that these constantly changing intermediates can be 'frozen' at controlled time points into particles with various unusual and unprecedented shapes. These novel vortex ring-derived particles, are mass-produced by employing a simple and inexpensive electrospraying technique, with their sizes well controlled from hundreds of microns to millimetres. Guided further by theoretical analyses and a laminar multiphase fluid flow simulation, we show that this freezing approach is applicable to a broad range of materials from organic polysaccharides to inorganic nanoparticles. We demonstrate the unique advantages of these vortex ring-derived particles in several applications including cell encapsulation, three-dimensional cell culture, and cell-free protein production. Moreover, compartmentalization and ordered-structures composed of these novel particles are all achieved, creating opportunities to engineer more sophisticated hierarchical materials.

2.
Acc Chem Res ; 47(6): 1902-11, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24884022

ABSTRACT

CONSPECTUS: In recent decades, DNA has taken on an assortment of diverse roles, not only as the central genetic molecule in biological systems but also as a generic material for nanoscale engineering. DNA possesses many exceptional properties, including its biological function, biocompatibility, molecular recognition ability, and nanoscale controllability. Taking advantage of these unique attributes, a variety of DNA materials have been created with properties derived both from the biological functions and from the structural characteristics of DNA molecules. These novel DNA materials provide a natural bridge between nanotechnology and biotechnology, leading to far-ranging real-world applications. In this Account, we describe our work on the design and construction of DNA materials. Based on the role of DNA in the construction, we categorize DNA materials into two classes: substrate and linker. As a substrate, DNA interfaces with enzymes in biochemical reactions, making use of molecular biology's "enzymatic toolkit". For example, employing DNA as a substrate, we utilized enzymatic ligation to prepare the first bulk hydrogel made entirely of DNA. Using this DNA hydrogel as a structural scaffold, we created a protein-producing DNA hydrogel via linking plasmid DNA onto the hydrogel matrix through enzymatic ligation. Furthermore, to fully make use of the advantages of both DNA materials and polymerase chain reaction (PCR), we prepared thermostable branched DNA that could remain intact even under denaturing conditions, allowing for their use as modular primers for PCR. Moreover, via enzymatic polymerization, we have recently constructed a physical DNA hydrogel with unique internal structure and mechanical properties. As a linker, we have used DNA to interface with other functional moieties, including gold nanoparticles, clay minerals, proteins, and lipids, allowing for hybrid materials with unique properties for desired applications. For example, we recently designed a DNA-protein conjugate as a universal adapter for protein detection. We further demonstrate a diverse assortment of applications for these DNA materials including diagnostics, protein production, controlled drug release systems, the exploration of life evolution, and plasmonics. Although DNA has shown great potential as both substrate and linker in the construction of DNA materials, it is still in the initial stages of becoming a well-established and widely used material. Important challenges include the ease of design and fabrication, scaling-up, and minimizing cost. We envision that DNA materials will continue to bridge the gap between nanotechnology and biotechnology and will ultimately be employed for many real-world applications.


Subject(s)
Biotechnology/methods , DNA/chemistry , Nanotechnology/methods , Aluminum Silicates , Clay , Drug Liberation , Enzymes/chemistry , Hydrogels/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Nanostructures/chemistry , Polymerase Chain Reaction , Protein Engineering/methods , Proteins/chemistry
3.
Nanoscale ; 5(21): 10141-54, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24057263

ABSTRACT

Recent developments in nanotechnology have led to significant advancements in point-of-care (POC) nucleic acid detection. The ability to sense DNA and RNA in a portable format leads to important applications for a range of settings, from on-site detection in the field to bedside diagnostics, in both developing and developed countries. We review recent innovations in three key process components for nucleic acid detection: sample preparation, target amplification, and read-out modalities. We discuss how the advancements realized by nanotechnology are making POC nucleic acid detection increasingly applicable for decentralized and accessible testing, in particular for the developing world.


Subject(s)
Biosensing Techniques , DNA/analysis , Nanotechnology , Point-of-Care Systems , RNA/analysis , Electrochemical Techniques , Nanostructures/chemistry , Nanotechnology/instrumentation , Nucleic Acid Amplification Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...