Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 143(2): 024312, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26178110

ABSTRACT

The dynamics of electron attachment to the DNA base thymine are investigated using femtosecond time-resolved photoelectron imaging of the gas phase iodide-thymine (I(-)T) complex. An ultraviolet pump pulse ejects an electron from the iodide and prepares an iodine-thymine temporary negative ion that is photodetached with a near-IR probe pulse. The resulting photoelectrons are analyzed with velocity-map imaging. At excitation energies ranging from -120 meV to +90 meV with respect to the vertical detachment energy (VDE) of 4.05 eV for I(-)T, both the dipole-bound and valence-bound negative ions of thymine are observed. A slightly longer rise time for the valence-bound state than the dipole-bound state suggests that some of the dipole-bound anions convert to valence-bound species. No evidence is seen for a dipole-bound anion of thymine at higher excitation energies, in the range of 0.6 eV above the I(-)T VDE, which suggests that if the dipole-bound anion acts as a "doorway" to the valence-bound anion, it only does so at excitation energies near the VDE of the complex.


Subject(s)
Electrons , Thymine/chemistry , Anions/chemistry , DNA/chemistry , Gases/chemistry , Photoelectron Spectroscopy , Quaternary Ammonium Compounds/chemistry , Uracil/chemistry
2.
J Chem Phys ; 141(22): 224310, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25494752

ABSTRACT

Electron attachment to uracil was investigated by applying time-resolved photoelectron imaging to iodide-uracil (I(-)U) complexes. In these studies, an ultraviolet pump pulse initiated charge transfer from the iodide to the uracil, and the resulting dynamics of the uracil temporary negative ion were probed. Five different excitation energies were used, 4.00 eV, 4.07 eV, 4.14 eV, 4.21 eV, and 4.66 eV. At the four lowest excitation energies, which lie near the vertical detachment energy of the I(-)U complex (4.11 eV), signatures of both the dipole bound (DB) as well as the valence bound (VB) anion of uracil were observed. In contrast, only the VB anion was observed at 4.66 eV, in agreement with previous experiments in this higher energy range. The early-time dynamics of both states were highly excitation energy dependent. The rise time of the DB anion signal was ∼250 fs at 4.00 eV and 4.07 eV, ∼120 fs at 4.14 eV and cross-correlation limited at 4.21 eV. The VB anion rise time also changed with excitation energy, ranging from 200 to 300 fs for excitation energies 4.00-4.21 eV, to a cross-correlation limited time at 4.66 eV. The results suggest that the DB state acts as a "doorway" state to the VB anion at 4.00-4.21 eV, while direct attachment to the VB anion occurs at 4.66 eV.


Subject(s)
Iodides/chemistry , Uracil/chemistry , Electrons , Models, Molecular , Photoelectron Spectroscopy , Ultraviolet Rays
3.
J Chem Phys ; 140(18): 184317, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24832280

ABSTRACT

Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I(-)·CH3CN) and iodide-nitromethane (I(-)·CH3NO2) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4-900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion species then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.

4.
Faraday Discuss ; 163: 59-72; discussion 117-38, 2013.
Article in English | MEDLINE | ID: mdl-24020196

ABSTRACT

The energetics and dynamics of thymine and uracil transient negative ions were examined using femtosecond time-resolved photoelectron imaging. The vertical detachment energies (VDEs) of these systems were found to be 4.05 eV and 4.11 eV for iodide-thymine (I(-) x T) and iodide-uracil (I(-) x U) clusters, respectively. An ultraviolet pump pulse was used to promote intracluster charge transfer from iodide to the nucleobase. Subsequent electron detachment using an infrared probe pulse monitored the dynamics of the resulting transient negative ion. Photoelectron spectra reveal two primary features: a near-zero electron kinetic energy signal attributed to autodetachment and a transient feature representing photodetachment from the excited anion state. The transient state exhibits biexponential decay in both thymine and uracil complexes with short and long decay time constants ranging from 150-600 fs and 1-50 ps, respectively, depending on the excitation energy. However, both time constants are systematically shorter for I(-) x T. Vibrational autodetachment and iodine loss are identified as the primary decay mechanisms of the transient negative ions of thymine and uracil.


Subject(s)
Iodides/chemistry , Photoelectron Spectroscopy/methods , Thymine/chemistry , Uracil/chemistry , Electrons , Time Factors , Vibration
5.
J Am Chem Soc ; 135(6): 2128-31, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23350789

ABSTRACT

Time-resolved photoelectron imaging has been utilized to probe the energetics and dynamics of the transient negative ion of the nucleobase uracil. This species was created through charge transfer from an iodide anion within a binary iodide-uracil complex using a UV pump pulse; the ensuing dynamics were followed by photodetachment with a near-IR probe pulse. The photoelectron spectra show two time-dependent features, one from probe-induced photodetachment of the transient anion state and another from very low energy electron signal attributed to autodetachment. The transient anion was observed to decay biexponentially with time constants of hundreds of femtoseconds and tens of picoseconds, depending on the excitation energy. These dynamics are interpreted in terms of autodetachment from the initially excited state and a second, longer-lived species relaxed by iodine loss. Hydrogen loss from the N1 position may also occur in parallel.


Subject(s)
Uracil/chemistry , Ions/chemistry , Photoelectron Spectroscopy , Time Factors , Uracil/analogs & derivatives
6.
J Chem Phys ; 136(9): 094304, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22401437

ABSTRACT

The electron binding energies and relaxation dynamics of water cluster anions (H(2)O)(n)(-) (11 ≤ n ≤ 80) formed in co-expansions with neon were investigated using one-photon and time-resolved photoelectron imaging. Unlike previous experiments with argon, water cluster anions exhibit only one isomer class, the tightly bound isomer I with approximately the same binding energy as clusters formed in argon. This result, along with a decrease in the internal conversion lifetime of excited (H(2)O)(n)(-) (25 ≤ n ≤ 40), indicates that clusters are vibrationally warmer when formed in neon. Over the ranges studied, the vertical detachment energies and lifetimes appear to converge to previously reported values.

7.
J Phys Chem A ; 116(11): 2750-7, 2012 Mar 22.
Article in English | MEDLINE | ID: mdl-22043852

ABSTRACT

The effect of excitation energy on the lifetimes of the charge-transfer-to-solvent (CTTS) states of small (4 ≤ n ≤ 10) iodide-doped water and alcohol clusters was explored using femtosecond time-resolved photoelectron imaging. Excitation of the CTTS state at wavelengths ranging from 272 to 238 nm leads to the formation of the I···(ROH)(n)(-) (R═H-, CH(3)-, and CH(3)CH(2)-) species, which can be thought of as a vibrationally excited bare solvent cluster anion perturbed by an iodine atom. Autodetachment lifetimes for alcohol-containing clusters range from 1 to 71 ps, while water clusters survive for hundreds of ps in this size range. Autodetachment lifetimes were observed to decrease significantly with increasing excitation energy for a particular number and type of solvent molecules. The application of Klots' model for thermionic emission from clusters to I(-)(H(2)O)(5) and I(-)(CH(3)OH)(7) qualitatively reproduces experimental trends and reveals a high sensitivity to energy parametrization while remaining relatively insensitive to the number of vibrational modes. Experimental and computational results therefore suggest that the rate of electron emission is primarily determined by the energetics of the cluster system rather than by details of molecular structure.


Subject(s)
Alcohols/chemistry , Iodides/chemistry , Water/chemistry , Electrons , Iodine , Kinetics , Light , Molecular Structure , Photochemical Processes , Solvents/chemistry , Thermodynamics , Time Factors , Vibration
8.
J Chem Phys ; 134(12): 124311, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21456666

ABSTRACT

The dynamics of electron solvation following excitation of the charge-transfer-to-solvent precursor state in iodide-doped methanol clusters, I(-)(CH(3)OH)(n = 4-11), are studied with time-resolved photoelectron imaging. This excitation produces a I···(CH(3)OH)(n)(-) cluster that is unstable with respect to electron autodetachment and whose autodetachment lifetime increases monotonically from ~800 fs to 85 ps as n increases from 4 to 11. The vertical detachment energy (VDE) and width of the excited state feature in the photoelectron spectrum show complex time dependence during the lifetime of this state. The VDE decreases over the first 100-400 fs, then rises exponentially to a maximum with a ~1 ps time constant, and finally decreases by as much as 180 meV with timescales of 3-20 ps. The early dynamics are associated with electron transfer from the iodide to the methanol cluster, while the longer-time changes in VDE are attributed to solvent reordering, possibly in conjunction with ejection of neutral iodine from the cluster. Changes in the observed width of the spectrum largely follow those of the VDEs; the dynamics of both are attributed to the major rearrangement of the solvent cluster during relaxation. The relaxation dynamics are interpreted as a reorientation of at least one methanol molecule and the disruption and formation of the solvent network in order to accommodate the excess charge.


Subject(s)
Electrons , Iodides/chemistry , Methanol/chemistry , Photochemistry
9.
J Chem Phys ; 133(15): 154312, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-20969391

ABSTRACT

Anionic tetrahydrofuran clusters (THF)(n) (-) (1≤n≤100) are studied with photoelectron imaging as gas-phase precursors for electrons solvated in THF. Photoelectron spectra of clusters up to n=5 show two peaks, one of which is attributed to a solvated open chain radical anion and the other to the closed THF ring. At n=6, the spectra change shape abruptly, which become more characteristic of (THF)(n) (-) clusters containing solvated electrons. From n=6-100, the vertical detachment energies (VDEs) of these solvated electron clusters increase from 1.96 to 2.71 eV, scaling linearly with n(-1/3). For fully deuterated (THF-d8)(n) (-) clusters, the apparent transition to a solvated electron cluster is delayed to n=11. Extrapolation of the VDEs to infinite cluster size yields a value of 3.10 eV for the bulk photoelectric threshold. The relatively large VDEs at onset and small stabilization with increasing cluster size compared to other solvated electron clusters may reflect the tendency of the bulk solvent to form preexisting voids that can readily solvate a free electron.

SELECTION OF CITATIONS
SEARCH DETAIL
...