Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 13: 990850, 2022.
Article in English | MEDLINE | ID: mdl-36225362

ABSTRACT

Microbial interactions with plant roots play an imperial role in tomato plant growth and defense against the Rhizoctonia solani. This study performed a field experiment with two antagonistic bacteria (Pseudomonas and Bacillus) inoculated in healthy and Rhizoctonia solani treated soil in tomato rhizosphere to understand the metabolic pattern and microbial function during plant disease suppression. In the present study, we assessed soil and microbial enzymes, bacterial and fungal cell forming unit (CFU), and carbon utilization profiling through Bio-Eco plates of rhizoplane samples. Antagonist bacteria and pathogen interaction significantly (p < 0.05) influenced the bacterial count, soil enzymes (chitinase and glucanase), and bacterial function (siderophore and chitinase production). These results indicated that these variables had an imperial role in disease suppression during plant development. Furthermore, the metabolic profiling showed that carbon source utilization enhanced under fruit development and ripening stages. These results suggested that carbon sources were essential in plant/pathogen/antagonist interaction. Substrates like ß-methyl-D-glucoside, D-mannitol, D-galacturonic acid, N-acetyl-D-glucosamine, and phenylethylamine strongly connect with the suppuration of root rot disease. These carbon sources may help to propagate a healthy microbial community to reduce the pathogen invasion in the plant root system, and these carbon sources can be stimulators of antagonists against pathogens in the future.

2.
Environ Sci Pollut Res Int ; 29(48): 72968-72978, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35619003

ABSTRACT

The growth and sustainability of freshwater aquaculture are highly dependent on economic feed which is the major running cost. Fish feed industries depend on the high-priced fish meal (FM) as protein source in feed formulations. In this context, a nutrient-rich, and palatable insect meal-based fish feed was developed incorporating the black soldier fly (BSF) (Hermetia illucens) prepupae meal (BSFPM) reared on organic waste imparting additional benefit of waste bioremediation to make cost-effective feed. Feeding trial was conducted to evaluate growth performance on monosex Nile tilapia (Oreochromis niloticus). The different treatments were (1) dried BSF prepupae, (2) BSF prepupae and BSFPM-based feed in 1:1 proportion, (3) BSFPM feed, and (4) control feed with FM. The survival, growth, feed efficiency, and haematological parameters were not significantly different between BSFPM and control feed. Fish fed with control feed and BSFPM feed showed significantly higher (P ≤ 0.05) weight gain, specific growth rate, and percentage weight gain. Lowest food conversion ratio (P ≤ 0.05) was recorded for fish fed control feed with a significantly higher feed efficiency ratio (0.65d ± 0.034) and protein efficiency ratio (2.11a ± 0.063). The mean corpuscular volume of blood in fish fed BSF prepupae (128.5a ± 3.2) is significantly higher. The good growth of fish fed BSFPM feed may be attributed to the essential amino acids which are not limiting in feed. Absence of microbes and safe level heavy metals in BSFPM feed ensures safety of the ingredient. Hence, it can be used as a suitable protein source in feed formulations.


Subject(s)
Cichlids , Diptera , Amino Acids, Essential , Animal Feed/analysis , Animals , Weight Gain
3.
Antonie Van Leeuwenhoek ; 112(11): 1633-1644, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31222465

ABSTRACT

Biological control by using microbial inoculants is adopted as the best alternative to chemical pesticides to manage plant diseases. In the present study, a microbial consortia based management strategy involving the microbes Bacillus velezensis MB101 (BV), Streptomyces atrovirens N23 (SA) and Trichoderma lixii NAIMCC-F-01760 (TL), was evaluated for the management of Rhizoctonia solani (RS), the causal agent of tomato root rot. The efficacy of these microbial inoculants was evaluated in glasshouse and field experiments. Plant defense-related enzymes were assayed in the glasshouse, and biocontrol effect was evaluated in the field with RS infected soil. In the glasshouse experiment, co-inoculated SA + TL treated plants showed maximum disease resistance in comparison to control. Also, the plant defense-related enzymes such as chitinase, ß-1,3-glucanase, peroxidases, polyphenol oxidase, and phenylalanine ammonia lyase were increased in this treatment. Furthermore, three application methods were assessed in the field, and SA + TL showed maximum disease reduction (76%) by the dual application. Based on glasshouse and field study results, it was concluded that co-inoculation of SA + TL activated plant defense against RS as compared to the individual microbes, and co-inoculation could be a new effective strategy to manage the root rot pathogen in an eco-compatible manner.


Subject(s)
Antibiosis , Biological Control Agents , Plant Diseases/microbiology , Rhizoctonia/physiology , Solanum lycopersicum/microbiology , Plant Roots/microbiology , Soil Microbiology
4.
3 Biotech ; 7(2): 134, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28593520

ABSTRACT

Cell-free extracts of twenty terrestrial cyanobacteria were evaluated for their antioxidant properties in terms of free-radical scavenging (DPPH and ABTS) and metal chelating activity and deoxyribose protection. Extract of Anabaena constricta was the most prominent antioxidant agent (IC50 for DPPH activity 0.91 mg ml-1, ABTS 0.23 mg ml-1, deoxyribose protection 0.63 mg ml-1 and Fe+2-ion chelating 0.9 mg ml-1). The extracts of cyanobacterial species contained high quantity of total phenol and total flavonoid that were supposed to impart prominent antioxidant properties. Cyanobacterial species also showed fairly high PAL activity. We reported varied quantities of polyphenolics gallic, chlorogenic, caffeic, vanillic and ferulic acids and flavonoids rutin, quercetin and kaempferol in cyanobacterial extracts. The presence of these polyphenolics was linked with the free radical scavenging, metal chelating and antioxidative damage protecting properties of the organisms. Cyanobacteria are the most feasible, promising and alternative candidates for searching out new chemical leads for industrial applications in pharmaceuticals, neutraceuticals and biomolecules of importance. Presence of biomolecules such as polyphenolics and their connection with the prominent biological functions (e.g., antioxidant properties) make these organisms a potential source of secondary metabolites with predominant biological activities. Additionally, dominant presence of polyphenols as antioxidant agents in cyanobacterial species may reflect their adaptation strategies against abiotic stresses for their ecological success in different habitats.

5.
World J Microbiol Biotechnol ; 31(8): 1217-25, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25982747

ABSTRACT

A chitinolytic actinomycete Streptomyces vinaceusdrappus S5MW2 was isolated from water sample of Chilika lake, India and identified using 16S rRNA gene sequencing. It showed in vitro antifungal activity against the sclerotia producing pathogen Rhizoctonia solani in a dual culture assay and by chitinase enzyme production in a chitin supplemented minimal broth. Moreover, isolate S5MW2 was further characterized for biocontrol (BC) and plant growth promoting features in a greenhouse experiment with or without colloidal chitin (CC). Results of greenhouse experiment showed that CC supplementation with S5MW2 showed a significant growth of tomato plants and superior disease reduction as compared to untreated control and without CC treated plants. Moreover, higher accumulation of chitinase also recovered in the CC supplemented plants. Significant effect of CC also concurred with the Analysis of Variance of greenhouse parameters. These results show that the a marine antagonist S5MW2 has BC efficiency against R. solani and chitinase enzyme played important role in plant resistance.


Subject(s)
Chitin/metabolism , Lakes/microbiology , Plant Diseases/prevention & control , Rhizoctonia/physiology , Solanum lycopersicum/microbiology , Streptomyces/isolation & purification , India , Solanum lycopersicum/growth & development , Molecular Sequence Data , Plant Diseases/microbiology , Streptomyces/classification , Streptomyces/genetics , Streptomyces/metabolism
6.
Pol J Microbiol ; 64(4): 339-49, 2015.
Article in English | MEDLINE | ID: mdl-26999954

ABSTRACT

A total of 66 actinomycetes isolates were isolated from mangroves of Andhra Pradesh, India, using various enrichment techniques and pretreatments. The samples were collected from Coringa mangrove ecosystem and pre-treated by enrichment with CaCO3, sodium dodecyl sulphate and phenol, plated on the media supplemented with cycloheximide (50 mg/ml), nystatin (25 mg/ml) and nalidixic acid (50 mg/ml). The population count of actinomycetes fluctuated from 1.9 x 10(5) to 8.0 x 10(5)/g soil. Out of the isolated 66 actinomycetes, 8 isolates possessing plant growth promoting potential were further studied and characterized by physiological and biochemical traits and identified by 16S rRNA gene sequencing as different species of Streptomycetes genera.


Subject(s)
Actinobacteria/isolation & purification , Wetlands , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/metabolism , DNA, Bacterial/genetics , Nucleic Acid Amplification Techniques , Soil Microbiology
7.
Saudi J Biol Sci ; 19(4): 427-34, 2012 Oct.
Article in English | MEDLINE | ID: mdl-24936136

ABSTRACT

A total of 23 phosphate solubilizing bacteria (PSB) and 35 phosphate solubilizing fungi (PSF) were isolated from 19 samples of salt affected soils. The ability of 12 selected PSB and PSF to grow and solubilize tricalcium phosphate in the presence of different concentrations of NaCl was examined. Among 12 PSB, Aerococcus sp. strain PSBCRG1-1 recorded the highest (12.15) log viable cell count at 0.4 M NaCl concentration after 7 days after incubation (DAI) and the lowest log cell count (1.39) was recorded by Pseudomonas aeruginosa strain PSBI3-1 at 2.0 M NaCl concentration after 24 h of incubation. Highest mycelial dry weight irrespective of NaCl concentrations was recorded by the Aspergillus terreus strain PSFCRG2-1 (0.567 g). The percent P i release, in general, was found to increase with increase in NaCl concentration up to 0.8 M for bacterial solubilization and declined thereafter. At 15 DAI, strain Aerococcus sp. strain PSBCRG1-1 irrespective of NaCl concentrations showed the maximum P-solubilization (12.12%) which was significantly superior over all other isolates. The amount of P i released in general among PSF was found to decrease with increase in NaCl concentration at all the incubation periods. Aspergillus sp. strain PSFNRH-2 (20.81%) recorded the maximum P i release irrespective of the NaCl concentrations and was significantly superior over all other PSF at 7 DAI.

8.
Antonie Van Leeuwenhoek ; 101(4): 777-86, 2012 May.
Article in English | MEDLINE | ID: mdl-22200783

ABSTRACT

Methylotrophic bacteria were isolated from the phyllosphere of different crop plants such as sugarcane, pigeonpea, mustard, potato and radish. The methylotrophic isolates were differentiated based on growth characteristics and colony morphology on methanol supplemented ammonium mineral salts medium. Amplification of the mxaF gene helped in the identification of the methylotrophic isolates as belonging to the genus Methylobacterium. Cell-free culture filtrates of these strains enhanced seed germination of wheat (Triticum aestivum) with highest values of 98.3% observed using Methylobacterium sp. (NC4). Highest values of seedling length and vigour were recorded with Methylobacterium sp. (NC28). HPLC analysis of production by bacterial strains ranged from 1.09 to 9.89 µg ml(-1) of cytokinins in the culture filtrate. Such cytokinin producing beneficial methylotrophs can be useful in developing bio-inoculants through co-inoculation of pink-pigmented facultative methylotrophs with other compatible bacterial strains, for improving plant growth and productivity, in an environment-friendly manner.


Subject(s)
Methylobacterium/isolation & purification , Methylobacterium/metabolism , Plant Growth Regulators/metabolism , Seedlings/growth & development , Seedlings/microbiology , Triticum/growth & development , Triticum/microbiology , Chromatography, High Pressure Liquid , Cluster Analysis , Culture Media/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Methanol/metabolism , Methylobacterium/classification , Methylobacterium/genetics , Molecular Sequence Data , Phylogeny , Plant Leaves/microbiology , Quaternary Ammonium Compounds/metabolism , Sequence Analysis, DNA
9.
Mikrobiologiia ; 80(4): 552-9, 2011.
Article in English | MEDLINE | ID: mdl-22073557

ABSTRACT

Two diazotrophic cyanobacteria, Westiellopsis prolifica and Anabaena variabilis were evaluated for elucidating the possible mechanism of mineral phosphate solubilization. Phosphate starved cyanobacteria evaluated for the presence of organic acids, extracellular compounds or enzymes that might have been produced and promoted the mineral phosphate solubilization with Mussorie Rock Phosphate and Tricalcium Phosphate as substrates. Both the cultures did not reveal production of organic acids throughout the incubation period when checked for decrease in pH of the media and thin layer chromatography Thin layer chromatography of culture filtrates showed the presence of hydrocarbon like compound. Further analysis of the culture filtrates with gas liquid chromatography, a single peak near to the retention time of 7.6 was observed in all extracts of culture filtrates irrespective of phosphate source. UV-visible spectra of culture filtrates revealed the absorption maxima of 276 nm. Gas Chromatographic-Mass Spectrometric analysis of culture filtrates showed most intense peak in the electron impact (EI) ionization was at m/z 149 and molecular ion peaks at m/z 207 and 167, inferring the presence of phthalic acid. Among the mechanisms in mineral phosphate solubilization, it was evident that these cyanobacteria used phthalic acid as possible mode of P solubilization.


Subject(s)
Anabaena variabilis/chemistry , Calcium Phosphates/metabolism , Cyanobacteria/chemistry , Phosphates/chemistry , Anabaena variabilis/metabolism , Chromatography, Thin Layer , Cyanobacteria/metabolism , Hydrocarbons/chemistry , Hydrogen-Ion Concentration , Minerals/chemistry , Organic Chemicals/chemistry , Phthalic Acids/chemistry
10.
Antonie Van Leeuwenhoek ; 100(4): 557-68, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21732035

ABSTRACT

Phenylpropanoids, flavonoids and plant growth regulators in rice (Oryza sativa) variety (UPR 1823) inoculated with different cyanobacterial strains namely Anabaena oryzae, Anabaena doliolum, Phormidium fragile, Calothrix geitonos, Hapalosiphon intricatus, Aulosira fertilissima, Tolypothrix tenuis, Oscillatoria acuta and Plectonema boryanum were quantified using HPLC in pot conditions after 15 and 30 days. Qualitative analysis of the induced compounds using reverse phase HPLC and further confirmation with LC-MS/MS showed consistent accumulation of phenolic acids (gallic, gentisic, caffeic, chlorogenic and ferulic acids), flavonoids (rutin and quercetin) and phytohormones (indole acetic acid and indole butyric acid) in rice leaves. Plant growth promotion (shoot, root length and biomass) was positively correlated with total protein and chlorophyll content of leaves. Enzyme activity of peroxidase and phenylalanine ammonia lyase and total phenolic content was fairly high in rice leaves inoculated with O. acuta and P. boryanum after 30 days. Differential systemic accumulation of phenylpropanoids in plant leaves led us to conclude that cyanobacterial inoculation correlates positively with plant growth promotion and stress tolerance in rice. Furthermore, the study helped in deciphering possible mechanisms underlying plant growth promotion and stress tolerance in rice following cyanobacterial inoculation and indicated the less explored avenue of cyanobacterial colonization in stress tolerance against abiotic stress.


Subject(s)
Cyanobacteria/growth & development , Flavonoids/metabolism , Oryza/growth & development , Oryza/microbiology , Plant Growth Regulators/metabolism , Stress, Physiological , Oryza/physiology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology
11.
Indian J Microbiol ; 51(1): 48-53, 2011 Jan.
Article in English | MEDLINE | ID: mdl-22282628

ABSTRACT

The ability of two diazotrophic cyanobacteria Westiellopsis prolifica and Anabaena variabilis were examined to solubilize extracellular insoluble tricalcium phosphate (TCP) and Mussorie rock phosphate (MRP). The two strains exhibited a differential response to insoluble forms of phosphorus used. W. prolifica showed better growth in presence of MRP while A. variabilis proliferated better in presence of TCP. Biological nitrogen fixation measured in terms of acetylene reduction (AR) activity showed significant variation among the concentrations of TCP or MRP and time of incubation. W. prolifica and A. variabilis showed maximum AR activity on 14 and 21 days of incubation respectively. In general AR activity in presence of MRP was always less than that in presence of TCP at all concentrations. Among the two cyanobacteria A. variabilis was best in terms of P-solubilization and nitrogen fixation and TCP (20 mg P l(-1)) was the best source of insoluble P rather than MRP or K(2)HPO(4).

12.
Antonie Van Leeuwenhoek ; 97(3): 297-306, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20069361

ABSTRACT

The nitrogen fixing cyanobacterial strains namely Anabaena variabilis (Nostocales, Nostocaceae) and Westiellopsis prolifica (Nostocales, Hapalosiphonaceae) were evaluated for their nitrogen fixation and growth potential in response to different concentrations (10, 20 and 30 mg P) of the alternate insoluble P-sources Mussorie Rock Phosphate and Tricalcium Phosphate. Distinct and significant intergeneric differences were observed with respect to nitrogen fixation measured as Acetylene Reduction Activity (ARA) and growth potential as soluble proteins, total carbohydrate content, dry weight and total chlorophyll content in response to different concentrations of Mussorie Rock Phosphate and Tricalcium Phosphate. Both the strains showed higher soluble protein content at 20 mg P (Mussorie Rock Phosphate) that increased with time of incubation in A. variabilis. Both cyanobacteria recorded maximum Acetylene Reduction Activity at 20 mg P (Tricalcium Phosphate) followed by activity in presence of soluble phosphate (K2HPO4). The mean activity at all concentrations of insoluble phosphate (Mussorie Rock Phosphate and Tricalcium Phosphate) was more than in the presence of soluble phosphate.


Subject(s)
Cyanobacteria/growth & development , Cyanobacteria/metabolism , Nitrogen Fixation , Phosphates/metabolism , Acetylene/metabolism , Anabaena variabilis/chemistry , Anabaena variabilis/growth & development , Anabaena variabilis/metabolism , Bacterial Proteins/analysis , Biomass , Carbohydrates/analysis , Chlorophyll/analysis , Cyanobacteria/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...