Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Fish Shellfish Immunol ; 90: 1-11, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31015063

ABSTRACT

Francisella noatunensis subsp. noatunensis, the etiological agent of Francisellosis, affects a large number of farmed species such as Salmo salar. This species coexists with several native species in the same ecosystem, including Eleginops maclovinus. Our objective was to evaluate the susceptibility, presence of clinical symptoms, and the ability of Eleginops maclovinus to respond to Francisella infection. For this, healthy individuals were inoculated with 1.5 × 101, 1.5 × 105, and 1.5 × 1010 bact/µL of Francisella by intraperitoneal injection, subsequently the fish were sampled on days 1, 3, 7, 14, 21, and 28 post injection (dpi). At the end of the experiment, no mortality, nor internal and external clinical signs were observed, although in the high dose anaemia was detected. Additionally, bacteria were detected in all three doses, however there was replication at day 28 only in the liver in the high dose. Analysis of gene expression by qPCR showed that the spleen generated an immune response against infection from day 1 dpi, however at day 7 dpi most of the genes suffered repressed expression; observing over expression of the genes C3, NLRC3, NLRC5, MHCI, IgM. In contrast, expression in the anterior kidney did not vary significantly during the challenge. IgM quantification showed the production of antibodies in the medium and high doses. This study provides new knowledge about Francisella infection and the long-lasting and specific immune response generated by Eleginops maclovinus. It also demonstrates its susceptibility to Francisellosis where there is a difference in the immune response according to the tissue.


Subject(s)
Adaptive Immunity , Francisella/physiology , Head Kidney/immunology , Immunity, Innate , Perciformes/immunology , Spleen/immunology , Animals , Fish Diseases/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Perciformes/microbiology
2.
Article in English | MEDLINE | ID: mdl-30590175

ABSTRACT

Piscirickettsiosis caused by Piscirickettsia salmonis constitutes one of the main problems in farmed salmonid and marine fishes. The objective of this study was to evaluate the modulation of genes involved in the oxidative stress in the liver and muscle of Salmo salar challenge with low dosage of P. salmonis. The treatment (in duplicate) were as follows: Control injection (culture medium) and P. salmonis injection (1 × 102 PFU/mL) with sampling (liver and muscle) at several time-points during the 42-days experimental period (dpi). In liver, the gene expression of superoxide dismutase (SOD) and acetylcholinesterase (AChE) had differences with the control group only at 7 dpi, compared with glutathione-S-transferase (GST) and heat shock protein 70 (HSP70) that presented increases at 7 and 21 dpi. The glutathione peroxidase (GPx) and catalase (CAT) mRNAs were elevated at 13 and 21 dpi, respectively. While glutathione reductase (GR) and cytochrome P450 (P450) did not show variations in their expression during the experimental course. In muscle, the expression of CAT and AChE was higher than in the control condition at 2 and 42 dpi, respectively. While the number of transcripts SOD, GPx, GR, GST, P450 and HSP70 showed increases at 7- and 42-days post injection. The results suggest a transcriptional activation of genes involved in oxidative stress in both liver and muscle, with expression profiles that were tissue-specific and dependent on the time. This is the first study that reveals the transcriptional participation of all these genes associated with oxidative stress in response to the injection of P. salmonis.


Subject(s)
Fish Diseases/metabolism , Oxidative Stress , Piscirickettsia , Piscirickettsiaceae Infections/metabolism , Salmo salar/metabolism , Transcriptional Activation , Animals , Fish Diseases/microbiology , Piscirickettsiaceae Infections/veterinary , Salmo salar/microbiology
3.
Fish Shellfish Immunol ; 82: 492-503, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30165153

ABSTRACT

Eleginops maclovinus is a eurythermic fish that under natural conditions lives in environments with temperatures ranging from 4 to 18 °C and can be usually captured near salmon farming areas. The aim of this study was to evaluate the effect of temperature over the innate and adaptive immune response of E. maclovinus challenged with Piscirickettsia salmonis following different treatments: C (control injection with culture medium at 12 °C), C+ (bacterial injection at 12 °C), 18 °C c/A + B (injection with culture medium in acclimation at 18 °C), 18 °C c/A + B (bacterial injection in acclimation at 18 °C), 18 °C s/A + M (injection with culture medium without acclimation at 18 °C) and 18 °C s/A + B (bacterial injection without acclimation at 18 °C). Each injection had 100 µL of culture medium or with 100 µL at a concentration 1 × 108 of live bacteria, sampling six fish per group at 4, 8, 12, 16 and 20 days post-injection (dpi). Expression of the mRNA related with the innate immune response gene (TLR1, TLR5, TLR8, NLRC3, NLRC5, MyD88 and IL-1ß) as well as the adaptive immune response gene (MHCI, MHCII, IgMs and IgD) were measured in spleen and head kidney. Gene expression profiles were treatment-type and time dependent. Levels of Immunoglobulin M (IgM) increased in challenged groups with P. salmonis from day 8-20 post challenge, which suggest activation of B cells IgM + through P. salmonis epitope detection. Additionally, a rise in temperature from 12 °C (C+) to 18 °C (with/without acclimation) also resulted in antibody increment detected in serum with significant differences between "18 °C c/A + B" and "18 °C s/A + B" groups. This is the first study that evaluates the effect of temperature changes and mRNA expression related with immune system gene over time on E. maclovinus, a native wild life fish that cohabits in the salmon farming environment.


Subject(s)
Adaptive Immunity/genetics , Fish Diseases/immunology , Immunity, Innate/genetics , Perciformes/genetics , Perciformes/immunology , Piscirickettsiaceae Infections/veterinary , Transcriptome/immunology , Animals , Antarctic Regions , Fish Diseases/microbiology , Fish Proteins/genetics , Fish Proteins/metabolism , Piscirickettsia/physiology , Piscirickettsiaceae Infections/immunology , Piscirickettsiaceae Infections/microbiology , Temperature
4.
Fish Shellfish Immunol ; 75: 139-148, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29421586

ABSTRACT

Eleginops maclovinus is an endemic fish to Chile that lives in proximity to salmonid culture centers, feeding off of uneaten pellet and salmonid feces. Occurring in the natural environment, this interaction between native and farmed fish could result in the horizontal transmission of pathogens affecting the aquaculture industry. The aim of this study was to evaluate the innate and adaptive immune responses of E. maclovinus challenged with P. salmonis. Treatment injections (in duplicate) were as follows: control (100 µL of culture medium), wild type LF-89 strain (100 µL, 1 × 108 live bacteria), and antibiotic resistant strain Austral-005 (100 µL, 1 × 108 live bacteria). The fish were sampled at various time-points during the 35-day experimental period. The gene expression of TLRs (1, 5, and 8), NLRCs (3 and 5), C3, IL-1ß, MHCII, and IgMs were significantly modulated during the experimental period in both the spleen and gut (excepting TLR1 and TLR8 spleen expressions), with tissue-specific expression profiles and punctual differences between the injected strains. Anti-P. salmonis antibodies increased in E. maclovinus serum from day 14-28 for the LF-89 strain and from day 14-35 for the Austral-005 strain. These results suggest temporal activation of the innate and adaptive immune responses in E. maclovinus tissues when injected by distinct P. salmonis strains. The Austral-005 strain did not always cause the greatest increases/decreases in the number of transcripts, so the magnitude of the observed immune response (mRNA) may not be related to antibiotic resistance. This is the first immunological study to relate a pathogen widely studied in salmonids with a native fish.


Subject(s)
Adaptive Immunity , Fish Diseases/immunology , Immunity, Innate , Perciformes/immunology , Piscirickettsia/physiology , Piscirickettsiaceae Infections/veterinary , Animals , Antarctic Regions , Chile , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Piscirickettsia/genetics , Piscirickettsiaceae Infections/immunology , Random Allocation , Spleen/immunology , Spleen/microbiology , Time Factors
6.
Dev Comp Immunol ; 73: 88-96, 2017 08.
Article in English | MEDLINE | ID: mdl-28336188

ABSTRACT

Ferritin is a major iron storage protein essential not only in the infectious process, but also in any circumstance generating oxidative stress. In this study, the cDNA coding sequence of ferritin-H was obtained from the sub-Antarctic Notothenioid fish Eleginops maclovinus through transcriptomic analysis of the head kidney. This sequence contained a 534 bp open reading frame that coded for a 177 amino acid protein with a molecular weight of 20,786.2 Da and a theoretical pI of 5.56. The protein displayed a region of iron putative response elements in the 5'UTR, two putative ferritin iron-binding region signatures, and seven characteristic amino acids with ferroxidase functions. Phylogenetic analysis related this sequence to ferritin-H sequences of other Antarctic Notothenioid fish, sharing 96.61% similarity. Constitutive gene expression analysis in different organs revealed increased ferritin-H gene expression in the gills, spleen, muscle, and liver. After infection with two bacterial strains of Piscirickettsia salmonis (LF-89 and Austral-005), ferritin-H was differentially expressed depending on bacterial strain and tissue. This study provides relevant information towards understanding the iron metabolism of a sub-Antarctic Notothenioid fish.


Subject(s)
Apoferritins/physiology , Fish Diseases/immunology , Fishes/physiology , Animals , Fish Diseases/metabolism , Iron/metabolism , Piscirickettsia , Piscirickettsiaceae Infections/veterinary , Transcriptome
7.
J Appl Microbiol ; 119(2): 365-76, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26018590

ABSTRACT

AIMS: To produce and characterize egg yolk immunoglobulin (IgY) against the fish intracellular pathogen Piscirickettsia salmonis as well as to evaluate the antibacterial activity of IgY in vitro and the availability in the serum of fish immunized orally. METHODS AND RESULTS: Specific IgY was produced by immunizing hens with P. salmonis proteins. The IgY was obtained from egg yolks using the ammonium sulphate precipitation method and it was characterized by SDS-PAGE, Western-blot and ELISA, demonstrating that anti-P. salmonis IgY strongly reacted specifically against P. salmonis proteins. In an in vitro neutralization assay, IgY inhibited the growth of P. salmonis in liquid medium at concentrations ranging from 128 to 256 µg ml(-1) in a dose-dependent manner. Interestingly, IgY against P. salmonis also generates a strong protective effect on the infection of P. salmonis in salmon head kidney-1 cells. In addition, the bacteriostatic function of IgY appears to result possibly from agglutination by the interaction of IgY with surface components of the pathogen. Finally, to confirm this IgY as an alternative for salmonid treatment, Atlantic salmon (Salmo salar) specimens were orally inoculated with IgY. The analysis of the sera demonstrates that IgY was effectively transported by fish intestine and that this immunoglobulins maintains its properties and recognizes several proteins of P. salmonis up to 12 h after inoculation of IgY against P. salmonis. CONCLUSIONS: Specific IgY effectively inhibited the growth of P. salmonis and this immunoglobulin can be released in the Atlantic salmon sera when administered orally to fish. SIGNIFICANCE AND IMPACT OF THE STUDY: We propose that this specific IgY against this fastidious micro-organism could be a useful strategy for the treatment of piscirickettsiosis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Egg Yolk/chemistry , Fish Diseases/microbiology , Immunoglobulins/pharmacology , Piscirickettsia/drug effects , Piscirickettsiaceae Infections/veterinary , Animals , Anti-Bacterial Agents/isolation & purification , Chickens/immunology , Electrophoresis, Polyacrylamide Gel , Fish Diseases/drug therapy , Fish Diseases/immunology , Immunoglobulins/isolation & purification , Piscirickettsia/growth & development , Piscirickettsiaceae Infections/drug therapy , Piscirickettsiaceae Infections/immunology , Piscirickettsiaceae Infections/microbiology , Salmo salar/microbiology
8.
Dis Aquat Organ ; 113(1): 9-23, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25667332

ABSTRACT

Vibrio ordalii is the causative agent of atypical vibriosis and has the potential to cause severe losses in salmonid aquaculture, but the factors determining its virulence have not yet been elucidated. In this work, cell-surface-related properties of the isolates responsible for outbreaks in Atlantic salmon were investigated. We also briefly examined whether pathogenicity against fish varied for V. ordalii strains with differing cell-surface properties. Hydrocarbon adhesions indicated the hydrophobic character of V. ordalii, although only 4 of 18 isolates induced haemagglutination in Atlantic salmon erythrocytes. A minority of the studied isolates (6 of 18) and the type strain ATCC 33509T produced low-grade biofilm formation on polyethylene surface after 2 h post-inoculation (hpi), but no strains were slime producers. Interestingly, V. ordalii isolates showed wide differences in hydrophobicity. Therefore, we chose 3 V. ordalii isolates (Vo-LM-03, Vo-LM-18 and Vo-LM-16) as representative of each hydrophobicity group (strongly hydrophobic, relatively hydrophobic and quasi-hydrophilic, respectively) and ATCC 33509T was used in the pathogenicity studies. All tested V. ordalii strains except the type strain resisted the killing activity of Atlantic salmon mucus and serum, and could proliferate in these components. Moreover, all V. ordalii isolates adhered to SHK-1 cells, causing damage to fish cell membrane permeability after 16 hpi. Virulence testing using rainbow trout revealed that isolate Vo-LM-18 was more virulent than isolates Vo-LM-03 and Vo-LM-16, indicating some relationship between haemagglutination and virulence, but not with hydrophobicity.


Subject(s)
Fish Diseases/microbiology , Salmo salar , Vibrio Infections/veterinary , Vibrio/cytology , Animals , Bacterial Adhesion/physiology , Biofilms/growth & development , Cell Line , Chile/epidemiology , Fish Diseases/epidemiology , Mucus/microbiology , Oncorhynchus mykiss , Skin/microbiology , Vibrio/pathogenicity , Vibrio/physiology , Vibrio Infections/epidemiology , Vibrio Infections/microbiology , Virulence
11.
Diabetologia ; 55(12): 3331-40, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22926403

ABSTRACT

AIMS/HYPOTHESIS: Manoeuvres aimed at increasing beta cell mass have been proposed as regenerative medicine strategies for diabetes treatment. Raf-1 kinase inhibitor protein 1 (RKIP1) is a common regulatory node of the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways and therefore may be involved in regulation of beta cell homeostasis. The aim of this study was to investigate the involvement of RKIP1 in the control of beta cell mass and function. METHODS: Rkip1 (also known as Pebp1) knockout (Rkip1 (-/-)) mice were characterised in terms of pancreatic and glucose homeostasis, including morphological and functional analysis. Glucose tolerance and insulin sensitivity were examined, followed by assessment of glucose-induced insulin secretion in isolated islets and beta cell mass quantification through morphometry. Further characterisation included determination of endocrine and exocrine proliferation, apoptosis, MAPK activation and whole genome gene expression assays. Capacity to reverse a diabetic phenotype was assessed in adult Rkip1 (-/-) mice after streptozotocin treatment. RESULTS: Rkip1 (-/-) mice exhibit a moderately larger pancreas and increased beta cell mass and pancreatic insulin content, which correlate with an overall improvement in whole body glucose tolerance. This phenotype is established in young postnatal stages and involves enhanced cellular proliferation without significant alterations in cell death. Importantly, adult Rkip1 (-/-) mice exhibit rapid reversal of streptozotocin-induced diabetes compared with control mice. CONCLUSIONS/INTERPRETATION: These data implicate RKIP1 in the regulation of pancreatic growth and beta cell expansion, thus revealing RKIP1 as a potential pharmacological target to promote beta cell regeneration.


Subject(s)
Diabetes Mellitus, Experimental/pathology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , NF-kappa B/metabolism , Phosphatidylethanolamine Binding Protein/metabolism , Animals , Blotting, Western , Cell Proliferation/drug effects , Diabetes Mellitus, Experimental/drug therapy , Fluorescent Antibody Technique , Homeostasis , Male , Mice , Mice, Knockout , Phenotype , Phosphatidylethanolamine Binding Protein/pharmacology , Phosphorylation
12.
Dis Aquat Organ ; 97(3): 197-205, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22422090

ABSTRACT

Piscirickettsiosis or salmonid rickettsial septicaemia (SRS) caused by Piscirickettsia salmonis constitutes one of the main problems in farmed salmonid and marine fishes. Since the first reports of the disease, it has been successfully isolated and maintained in eukaryotic cell--culture systems, but these systems are time-consuming, the media are costly, and eliminating heavily contaminated host cell debris is difficult. In this report, we describe a marine-based broth supplemented with L-cysteine, named AUSTRAL-SRS broth, that facilitates superior growth of P. salmonis strains. Strains reached an optical density of approximately 1.8 when absorbance was measured at 600 nm after 6 d incubation at 18°C. Several passages (n = 6) did not alter the culture kinetics. We report for the first time the purification of DNA, lipopolysaccharide (LPS) and whole membrane protein obtained from P. salmonis grown in this liquid medium, and thus provide a suitable platform to simplify the preparation of P. salmonis cells for genetic and serological studies. Moreover, the results of the cytopathic effect test showed that P. salmonis grown in AUSTRAL-SRS broth maintained their virulence properties, inducing apoptosis after 3 d. This makes the medium a good candidate for the successful growth of P. salmonis and an excellent basis for the development of low cost vaccines.


Subject(s)
Bacteriological Techniques , Culture Media/chemistry , Piscirickettsia/physiology , Animals , Bacterial Proteins/metabolism , Cell Line , Cysteine/chemistry , Gene Expression Regulation, Bacterial/physiology , Head Kidney/cytology , Salmon , Time Factors
13.
Microsc Res Tech ; 74(4): 329-36, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20687127

ABSTRACT

Fructose-1,6-bisphosphatase has been studied in adult mouse brain of different ages using an antibody directed against the liver isoform. The presence of liver fructose-1,6-bisphosphatase in cerebellum, cerebral cortex, and hippocampus was assayed using Western blot and different immunocytochemical techniques. Immunocytochemistry with peroxidase reaction product was used to locate fructose-1,6-bisphosphatase in both neurons and astrocytes in the same areas, as well as in the rest of the brain, at light and electron microscope levels. Double immunofluorescence with neuronal or astrocytic markers confirmed the neuronal and astrocytic location of fructose-1,6-bisphosphatase in confocal microscope images. At the subcellular level, fructose-1,6-bisphosphatase was located in the nuclear and cytoplasmic compartments of both neurons and astrocytes, at all ages studied. Ultrastructurally, immunostaining appeared as small patches in the nucleus and the cytosol. In addition, immunostaining was present over the outer mitochondrial membrane, the plasma membrane, and the membranes of the rough endoplasmic reticulum and nuclear envelope, but not over Golgi membranes. In the neuropil fructose-1,6-bisphosphatase was located in dendritic spines, as well as in abundant astrocytic processes that, in some cases, surrounded immunopositive synapses. The possible role of fructose-1,6-bisphosphatase in neurons and astrocytes is discussed.


Subject(s)
Cerebellum/enzymology , Cerebral Cortex/enzymology , Fructose-Bisphosphatase/analysis , Hippocampus/enzymology , Animals , Astrocytes/enzymology , Blotting, Western , Cerebellum/ultrastructure , Cerebral Cortex/ultrastructure , Fluorescent Antibody Technique , Hippocampus/ultrastructure , Immunohistochemistry , Mice , Microscopy , Neurons/enzymology
14.
Dis Aquat Organ ; 90(1): 25-30, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20597427

ABSTRACT

The objective of this study was to evaluate the application of a TaqMan real-time reverse transcriptase PCR (RT-PCR) assay for the detection of infectious salmon anaemia virus (ISAV) in formalin-fixed paraffin-embedded (FFPE) fish tissues from Atlantic salmon Salmo salar with and without clinical signs of infection, and to compare it with histological and immunohistochemical (IHC) techniques. Sixteen fish samples obtained in 2007 and 2008 from 4 different farms in Chile were examined. The real-time RT-PCR allowed the detection of ISAV in FFPE samples from 9 of 16 fish, regardless of the organs analyzed, whereas 4 of the real-time RT-PCR negative fish were positive as indicated by histological examination and 3 of the real-time RT-PCR positive fish were negative as indicated by immunohistochemistry evaluation. The presence of ISAV in RT-PCR positive samples was confirmed by amplicon sequencing. This work constitutes the first report on the use of real-time RT-PCR for the detection of ISAV in FFPE sections. The assay is very useful for the examination of archival wax-embedded tissues, and allows for both prospective and retrospective evaluation of tissue samples for the presence of ISAV. However, the method only confirms the presence of the pathogen and should be used in combination with histopathology, which is a more precise tool. The combination of both techniques would be invaluable for confirmatory diagnosis of infectious salmon anaemia (ISA), which is essential for solving salmon farm problems.


Subject(s)
Fish Diseases/virology , Isavirus/isolation & purification , Orthomyxoviridae Infections/veterinary , Paraffin Embedding/veterinary , Salmo salar , Tissue Fixation/veterinary , Animals , Fish Diseases/diagnosis , Fixatives/chemistry , Formaldehyde/chemistry , Orthomyxoviridae Infections/diagnosis , Orthomyxoviridae Infections/virology , Paraffin Embedding/methods , Reverse Transcriptase Polymerase Chain Reaction , Tissue Fixation/methods
15.
Transpl Immunol ; 22(1-2): 72-81, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19628039

ABSTRACT

BACKGROUND: Tacrolimus (FK506) is a macrolide immunosuppressant drug from the calcineurin inhibitor family, widely used in solid organ and islet cell transplantation, but produces significant side-effects. OBJECTIVE: This study examined the effect of FK506 on interleukin-2 (IL-2) and insulin secretion, establishing a novel characteristic of this drug that could explain its diverse adverse effects, and developed an experimental model for the simultaneous analysis of mRNA expression and protein secretion affected by this drug. METHODS: The IL-2 levels when tacrolimus was administered were analysed by Western blot, immunocytochemistry and RT-PCR in a T lymphocyte cellular line (Jurkat) 24 h post-stimulation. The insulin levels when tacrolimus was administered were analysed 4 h after stimulation of glucose-induced insulin secretion in a pancreatic cellular line (MIN6). RESULTS: The previously published information describes tacrolimus as only capable of partially blocking IL-2 mRNA expression. In our hands, the cellular content of IL-2 is almost undetectable in stimulated Jurkat cells and can be detected in cellular extracts only when the secretory pathway is blocked by brefeldin A (BFA). BFA added 2 h after the beginning of stimulation was able to inhibit IL-2 secretion, without affecting IL-2 mRNA expression. Therefore BFA utilization allowed us to establish a model to analyze the effect on IL-2 secretion, separately from its expression. Tacrolimus added before stimulation inhibits only IL-2 synthesis, but blocks IL-2 protein secretion when added 2 h after stimulation. Similarly, tacrolimus is also capable of blocking the glucose-stimulated secretion of insulin by MIN6 cells. An increase of the intracellular content can be detected concomitantly with a decrease of the hormone measured in the culture medium. CONCLUSIONS: Results of this study indicate that tacrolimus possesses another important effect in addition to the inhibition of IL-2 gene transcription, namely the ability to act as a general inhibitor of the protein secretory pathway. These results strongly suggest that the diabetogenic effect of the immune suppressant FK506 could be caused by the blockade of insulin secretion. This novel effect also provides an explanation for other side-effects observed in immunosuppressive treatment.


Subject(s)
Immunosuppression Therapy , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/pharmacology , Proteins/metabolism , Secretory Pathway/drug effects , Tacrolimus/adverse effects , Tacrolimus/pharmacology , Animals , Brefeldin A/pharmacology , Cell Line, Tumor , Gene Expression/drug effects , Gene Expression/genetics , Glucose/pharmacology , Golgi Apparatus/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Interleukin-2/genetics , Interleukin-2/metabolism , Jurkat Cells , Lymphocyte Activation/drug effects , Mice , Phytohemagglutinins/pharmacology , Proteins/genetics , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Tetradecanoylphorbol Acetate/pharmacology
16.
Biochem Biophys Res Commun ; 366(1): 180-5, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18060864

ABSTRACT

Up-regulation of the glomerular expression and the activity of vascular endothelial growth factor-A (VEGF) have been identified as an early pathogenic event for the progression of diabetic nephropathy. Currently, however the mediators are not yet clearly recognized. In this study we identified all four adenosine receptor (AR) subtypes, i.e. A(1), A(2A), A(2B) and A(3) in isolated rat kidney glomeruli. We localized the expression of A(2B)AR in podocytes, the primary VEGF producing cells. The ex vivo treatment of kidney glomeruli with adenosine or a general AR agonist NECA, increases VEGF protein content. In addition, NECA treatment elicits VEGF release. These effects were blocked by the A(2B)AR selective antagonist MRS1754 supplementation. Furthermore, we showed that A(2B)AR activation was necessary to promote a higher expression of VEGF in kidney glomeruli upon exposure to high d-glucose concentration, a pathogenic condition like those observed in diabetic nephropathy.


Subject(s)
Kidney Glomerulus/metabolism , Receptor, Adenosine A2B/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Cells, Cultured , Male , Rats , Rats, Sprague-Dawley
17.
Arch Biochem Biophys ; 382(1): 113-22, 2000 Oct 01.
Article in English | MEDLINE | ID: mdl-11051104

ABSTRACT

At 30 degrees C, the precursor to mitochondrial aspartate aminotransferase (pmAspAT) cannot fold after synthesis in rabbit reticulocyte lysate (RRL), a model for studying intracellular protein folding. However, it folds rapidly once imported into mitochondria. Guanidinium chloride denatured pmAspAT likewise cannot refold at 30 degrees C in a defined in vitro system. However, it refolds rapidly and in good yield in the presence of the intramitochondrial chaperone homologues GroEL and GroES. In this report, we demonstrate that GroEL and GroES can also facilitate the folding of nascent pmAspAT in reticulocyte lysate under conditions where it otherwise would not. When added alone, GroEL arrests the slow folding of nascent pmAspAT and inhibits import into mitochondria. These effects are significantly reversed by adding GroES. These observations suggest that added GroEL participates in an equilibrium with endogenous chaperones in the cytosol which inhibit folding and promote import competence. Native gel electrophoresis suggests that nascent pmAspAT exists in RRL as a heterogeneous population of partially folded species, some of which bind to added GroEL more readily than others. The GroEL-trapped species appear to be among the productive pmAspAT folding intermediates formed in RRL or they at least appear to equilibrate with these intermediates, since they become import competent after GroES-stimulated release from GroEL.


Subject(s)
Aspartate Aminotransferases/chemistry , Chaperonin 10/metabolism , Chaperonin 60/metabolism , Mitochondria/enzymology , Animals , Biological Transport , Cell-Free System , Cytosol/metabolism , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Escherichia coli/metabolism , Protein Binding , Protein Biosynthesis , Protein Folding , Rabbits , Reticulocytes/metabolism , Temperature , Time Factors
18.
J Biol Chem ; 275(44): 34147-56, 2000 Nov 03.
Article in English | MEDLINE | ID: mdl-10938277

ABSTRACT

The possible contribution of the mature portion of a mitochondrial precursor protein to its interaction with membrane lipids is unclear. To address this issue, we examined the interaction of the precursor to mitochondrial aspartate aminotransferase (pmAAT) and of a synthetic peptide corresponding to the 29-residue presequence peptide (mAAT-pp) with anionic phospholipid vesicles. The affinity of mAAT-pp and pmAAT for anionic vesicles is nearly identical. Results obtained by analyzing the effect of mAAT-pp or full-length pmAAT on either the permeability or microviscosity of the phospholipid vesicles are consistent with only a shallow insertion of the presequence peptide in the bilayer. Analysis of the quenching of Trp-17 fluorescence by brominated phospholipids reveals that this presequence residue inserts to a depth of approximately 9 A from the center of the bilayer. Furthermore, in membrane-bound pmAAT or mAAT-pp, both Arg-8 and Arg-28 are accessible to the solvent. These results suggest that the presequence segment lies close to the surface of the membrane and that the mature portion of the precursor protein has little effect on the affinity or mode of binding of the presequence to model membranes. In the presence of vesicles, mAAT-pp adopts considerable alpha-helical structure. Hydrolysis by trypsin after Arg-8 results in the dissociation of the remaining 21-residue C-terminal peptide fragment from the membrane bilayer, suggesting that the N-terminal portion of the presequence is essential for membrane binding. Based on these results, we propose that the presequence peptide may contain dual recognition elements for both the lipid and import receptor components of the mitochondrial membrane.


Subject(s)
Aspartate Aminotransferases/metabolism , Enzyme Precursors/metabolism , Membranes, Artificial , Mitochondria/enzymology , Aspartate Aminotransferases/chemistry , Circular Dichroism , Fluorescence Polarization , Kinetics , Protein Structure, Secondary , Trypsin/metabolism
19.
Eur J Biochem ; 267(8): 2242-51, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10759847

ABSTRACT

To understand the mechanism of signal propagation involved in the cooperative AMP inhibition of the homotetrameric enzyme pig-kidney fructose-1,6-bisphosphatase, Arg49 and Lys50 residues located at the C1-C2 interface of this enzyme were replaced using site-directed mutagenesis. The mutant enzymes Lys50Ala, Lys50Gln, Arg49Ala and Arg49Gln were expressed in Escherichia coli, purified to homogeneity and the initial rate kinetics were compared with the wild-type recombinant enzyme. The mutants exhibited kcat, Km and I50 values for fructose-2,6-bisphosphate that were similar to those of the wild-type enzyme. The kinetic mechanism of AMP inhibition with respect to Mg2+ was changed from competitive (wild-type) to noncompetitive in the mutant enzymes. The Lys50Ala and Lys50Gln mutants showed a biphasic behavior towards AMP, with total loss of cooperativity. In addition, in these mutants the mechanism of AMP inhibition with respect to fructose-1,6-bisphosphate changed from noncompetitive (wild-type) to uncompetitive. In contrast, AMP inhibition was strongly altered in Arg49Ala and Arg49Gln enzymes; the mutants had > 1000-fold lower AMP affinity relative to the wild-type enzyme and exhibited no AMP cooperativity. These studies strongly indicate that the C1-C2 interface is critical for propagation of the cooperative signal between the AMP sites on the different subunits and also in the mechanism of allosteric inhibition of the enzyme by AMP.


Subject(s)
Adenosine Monophosphate/pharmacology , Enzyme Inhibitors/pharmacology , Fructose-Bisphosphatase/metabolism , Kidney/enzymology , Allosteric Regulation , Animals , Binding Sites , Enzyme Stability , Escherichia coli , Fructose-Bisphosphatase/antagonists & inhibitors , Fructose-Bisphosphatase/genetics , Fructosediphosphates/pharmacology , Kinetics , Magnesium/pharmacology , Mutagenesis, Site-Directed , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Swine , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...