Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Seizure ; 58: 110-119, 2018 May.
Article in English | MEDLINE | ID: mdl-29702408

ABSTRACT

PURPOSE: To perform comprehensive profiling of long non-coding RNAs (LncRNAs) in temporal lobe epilepsy. METHODS: We performed extensive profiling of LncRNAs and mRNAs in the mouse pilocarpine model in specific brain regions, the hippocampus and cortex, and compared the results to those of the control mouse. Differentially expressed LncRNAs and mRNAs were identified with a microarray analysis (Arraystar Mouse LncRNA Expression Microarray V3.0). Then, gene ontology (GO) and pathway analysis were performed to investigate the potential roles of the differentially expressed mRNAs in the pilocarpine model. Protein-protein interactions transcribed by dysregulated mRNAs with/without co-dysregulated LncRNAs were analyzed using STRING v10 (http://string-db.org/). RESULTS: A total of 22 and 83 LncRNAs were up- and down-regulated (≥2.0-fold, all P < .05), respectively, in the hippocampus of the epilepsy model, while 46 and 659 LncRNAs were up- and down-regulated, respectively, in the cortex of the epilepsy model. GO and pathway analysis revealed that the dysregulated mRNAs were closely associated with a process already known to be involved in epileptogenesis: acute inflammation, calcium ion regulation, extracellular matrix remodeling, and neuronal differentiation. Among the LncRNAs, we identified 10 LncRNAs commonly dysregulated with corresponding mRNAs in the cortex. The STRING analysis showed that the dysregulated mRNAs were interconnected around two centers: the mTOR pathway-related genes and REST pathway-related genes. CONCLUSION: LncRNAs were dysregulated in the pilocarpine mouse model according to the brain regions of the hippocampus and cortex. The dysregulated LncRNAs with co-dysregulated mRNAs might be possible therapeutic targets for the epigenetic regulation of chronic epilepsy.


Subject(s)
Cerebral Cortex/metabolism , Epilepsy, Temporal Lobe/metabolism , Hippocampus/metabolism , RNA, Long Noncoding/metabolism , Animals , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation , Male , Mice, Inbred C57BL , Microarray Analysis , Pilocarpine , RNA, Messenger/metabolism , Random Allocation , Repressor Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
Ann Neurol ; 81(2): 183-192, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28026029

ABSTRACT

OBJECTIVE: Autoimmune encephalitis (AE), represented by anti-leucine-rich glioma-inactivated 1 (anti-LGI1) and anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis, has increasing clinical significance based on recent discoveries of neuronal autoantibodies. However, its immunopathogenesis is not fully understood. Here, we investigated whether AE is associated with the human leukocyte antigen (HLA) subtypes. METHODS: We compared the HLA genotypes of 11 anti-LGI1 and 17 anti-NMDAR encephalitis patients to the control groups, which consisted of 210 epilepsy patients and 485 healthy Koreans. RESULTS: Anti-LGI1 encephalitis was associated with the DRB1*07:01-DQB1*02:02 haplotype (10 patients; 91%) in HLA class II genes, as well as with B*44:03 (8 patients; 73%) and C*07:06 (7 patients; 64%) in the HLA class I region. The prevalence of these alleles in anti-LGI1 encephalitis was significantly higher than that in the epilepsy controls or healthy controls. By contrast, anti-NMDAR encephalitis was not associated with HLA genotypes. Additional analysis using HLA-peptide binding prediction algorithms and computational docking underpinned the close relationship. INTERPRETATION: This finding suggests that most anti-LGI1 encephalitis develops in a population with specific HLA subtypes, providing insight into a novel disease mechanism. Ann Neurol 2017;81:183-192.


Subject(s)
Encephalitis/genetics , Encephalitis/immunology , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Proteins/immunology , Adolescent , Adult , Aged , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/genetics , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/immunology , Autoantibodies , Female , Haplotypes , Humans , Intracellular Signaling Peptides and Proteins , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...