Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Int J Med Sci ; 21(6): 1155-1164, 2024.
Article in English | MEDLINE | ID: mdl-38774749

ABSTRACT

Introduction: Clinical studies have shown that endodontically-treated nonvital teeth exhibit less root resorption during orthodontic tooth movement. The purpose of this study was to explore whether hypoxic dental pulp stem cells (DPSCs) can promote osteoclastogenesis in orthodontically induced inflammatory root resorption (OIIRR). Methods: Succinate in the supernatant of DPSCs under normal and hypoxic conditions was measured by a succinic acid assay kit. The culture supernatant of hypoxia-treated DPSCs was used as conditioned medium (Hypo-CM). Bone marrow-derived macrophages (BMDMs) from succinate receptor 1 (SUCNR1)-knockout or wild-type mice were cultured with conditioned medium (CM), exogenous succinate or a specific inhibitor of SUCNR1 (4c). Tartrate-resistant acid phosphatase (TRAP) staining, Transwell assays, qPCR, Western blotting, and resorption assays were used to evaluate osteoclastogenesis-related changes. Results: The concentration of succinate reached a maximal concentration at 6 h in the supernatant of hypoxia-treated DPSCs. Hypo-CM-treated macrophages were polarized to M1 proinflammatory macrophages. Hypo-CM treatment significantly increased the formation and differentiation of osteoclasts and increased the expression of osteoclastogenesis-related genes, and this effect was inhibited by the specific succinate inhibitor 4c. Succinate promoted chemotaxis and polarization of M1-type macrophages with increased expression of osteoclast generation-related genes. SUCNR1 knockout decreased macrophage migration, M1 macrophage polarization, differentiation and maturation of osteoclasts, as shown by TRAP and NFATc1 expression and cementum resorption. Conclusions: Hypoxic DPSC-derived succinate may promote osteoclast differentiation and root resorption. The regulation of the succinate-SUCNR1 axis may contribute to the reduction in the OIIRR.


Subject(s)
Dental Pulp , Mice, Knockout , Osteoclasts , Osteogenesis , Root Resorption , Stem Cells , Succinic Acid , Animals , Mice , Dental Pulp/cytology , Dental Pulp/drug effects , Dental Pulp/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Root Resorption/pathology , Root Resorption/metabolism , Humans , Succinic Acid/metabolism , Osteogenesis/drug effects , Stem Cells/metabolism , Stem Cells/drug effects , Cell Differentiation/drug effects , Macrophages/metabolism , Macrophages/drug effects , Cell Hypoxia/drug effects , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Culture Media, Conditioned/pharmacology , Cells, Cultured
2.
J Environ Manage ; 296: 113174, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34237673

ABSTRACT

Chemical washing has been carried out to remediate soil contaminated with heavy metals. In this study, the appropriate washing conditions for N,N-bis(carboxymethyl)-L-glutamic acid (GLDA) combined with ascorbic acid were determined to remove As, Cd, and Pb in the soil from the smelting site. The mechanism of heavy metal removal by the washing agent was also clarified. The results showed that heavy metals in the soil from the smelting site can be effectively removed. The removal percentages of As, Cd, and Pb in the soil from the smelting site were found to be 34.49%, 63.26%, and 62.93%, respectively, under optimal conditions (GLDA and ascorbic acid concentration ratio of 5:20, pH of 3, washing for 60 min, and the liquid-to-solid ratio of 10). GLDA combined with ascorbic acid efficiently removes As, Cd, and Pb from the soil through synergistic proton obstruction, chelation, and reduction. GLDA can chelate with iron and aluminum oxides while directly chelate with Cd and Pb. Ascorbic acid can reduce both Fe(III) to Fe(II) and As(III) to As0. The dissolution of As was promoted by indirectly preempting the binding sites of iron and aluminum in the soil while those of Cd and Pb were improved by directly interrupting the binding sites. This study suggested that GLDA combined with ascorbic acid is an effective cleanup technology to remove As, Cd, and Pb simultaneously from contaminated smelting site soils.


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Ascorbic Acid , Cadmium/analysis , Ferric Compounds , Glutamic Acid , Lead , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis
3.
Huan Jing Ke Xue ; 42(8): 4015-4023, 2021 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-34309288

ABSTRACT

Vertically tiered soil profiles, comprising miscellaneous fill (S1), plain fill (S2), silty clay (S3), and completely weathered slate (S4), were collected from a zinc smelter site in Zhuzhou City, Hunan Province, and their Cd and Pb adsorption characteristics were examined. Static batch experiments were conducted with different initial Cd and Pb solution concentrations, at temperatures of 288-308 K and pH values of 2-6. The results showed that a pseudo first-order model could be fitted to the kinetics of Cd/Pb adsorption in these soils. The soil profiles had a large retention capacity for Cd and Pb. The Cd and Pb adsorption isotherms for these soils conformed to the Freundlich isotherm, with maximum adsorption at 298 K of 2097-4504 mg ·kg-1 for Cd and 4376-10564 mg ·kg-1 for Pb, based on the Langmuir isotherm. The adsorption capacity of Cd and Pb increased with an increase in initial pH and temperature. The Cd and Pb adsorption process were a spontaneous physical and chemical process, and the soil profiles were ranked by their Cd and Pb adsorption capacities in the following order:completely weathered slate (S4)>miscellaneous fill (S1)>silty clay (S3)>plain fill (S2). The variation in adsorption capacities resulted from the differences in physical and chemical properties of the soil, mainly Fe/Al content and cation exchange capacity. Fourier transform infrared and SEM-EDS analysis showed that the main adsorption mechanism is the exchange of Cd and Pb with Fe/Al, while -OH/C=O sites in soils were the predominant adsorption sites for Cd and Pb. In the study area, exogenous Cd and Pb discharged by smelting activity accumulated predominantly in surface soil, and their concentration gradually decreased with depth. These results provide a scientific basis for the prevention and control of heavy metal pollution in the soil and groundwater of a smelting site.


Subject(s)
Soil Pollutants , Soil , Adsorption , Cadmium/analysis , Cities , Hydrogen-Ion Concentration , Kinetics , Lead , Soil Pollutants/analysis , Zinc/analysis
4.
Biochem Biophys Res Commun ; 554: 123-130, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33784507

ABSTRACT

Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy has been implicated in the ferroptosis in cancer cells and hematopoiesis in the bone marrow. However, the role of iron metabolism, especially NCOA4-mediated degradation of ferritin, has not been explored in the proliferation of mesenchymal stem cells. The present study was designed to explore the role of NCOA4-mediated ferritinophagy in hypoxia-treated dental pulp stem cells (DPSCs). Hypoxia treatment increased ROS generation, boosted cytosolic labile iron pool, increased expression of transferrin receptor 1 and NCOA4. Moreover, colocalization of LC3B with NCOA4 and ferritin was observed in hypoxia-treated DPSCs, indicating the development of ferritinophagy. Hypoxia promoted the proliferation of DPSCs, but not ferroptosis, under normal serum supplement and serum deprivation. NCOA4 knock-down reduced ferritin degradation and inhibited proliferation of DPSCs under hypoxia. Furthermore, the activation of hypoxia inducible factor 1α and p38 mitogen-activated protein kinase signaling pathway was involved in the upregulation of NCOA4 in hypoxia. Therefore, our present study suggested that NCOA4-mediated ferritinophagy promoted the level of labile iron pool, leading to enhanced iron availability and elevated cell proliferation of DPSCs. Our present study uncovered a physiological role of ferritinophagy in the proliferation and growth of mesenchymal stem cells under hypoxia.


Subject(s)
Cell Hypoxia/physiology , Dental Pulp/pathology , Ferritins/metabolism , Iron/metabolism , Nuclear Receptor Coactivators/metabolism , Stem Cells/pathology , Autophagy , Cell Proliferation/physiology , Dental Pulp/metabolism , Humans , Stem Cells/metabolism
5.
Head Face Med ; 16(1): 29, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33213460

ABSTRACT

BACKGROUND: Periodontal health is of great concern for periodontists and orthodontists in the inter-disciplinary management of patients with bimaxillary protrusion. The aim of present study is to investigate changes in the alveolar bone in the maxillary incisor region and to explore its relationship with displacement of root apex as well as changes in the inclination of maxillary incisors during incisor retraction. METHODS: Samples in this retrospective study consisted of 38 patients with bimaxillary protrusion. Cone-beam computed tomography (CBCT) images was taken before(T0) and after (T1) treatment. Alveolar bone thickness (ABT), height (ABH) and area (ABA) were utilized to evaluate changes in the alveolar bone, while incisor inclination and apex displacement were used to assess changes in the position of maxillary central and lateral incisors. Correlations between alveolar bone remodeling and apex displacement as well as changes in the inclination were investigated. RESULTS: The labial ABT of central and lateral incisors at the mid-root third was increased. In contrast, the palatal ABT at crestal, mid-root and apical third level were consistently decreased. ABH was not altered on the labial side, while significantly decreased on the palatal side. ABA was not significantly increased on the labial side, but significantly decreased on the palatal side, leading to a significantly reduced total ABA. Orthodontic treatment significantly reduced inclination of upper incisors. Changes in the amount (T1-T0) of ABA was remarkably correlated with apex displacement and changes of inclination (T1-T0); in addition, using the multivariate linear regression analysis, changes of ABA on the palatal side (T1-T0) can be described by following equation: Changes of palatal ABA (T1-T0) = - 3.258- 0.139× changes of inclination (T1-T0) + 2.533 × apex displacement (T1-T0). CONCLUSIONS: Retraction of incisors in bimaxillary protrusion patients may compromise periodontal bone support on the palatal side. An equation that incorporated the displacement of root apex and change in the incisor inclination may enable periodontist-orthodontist interdisciplinary coordination in assessing treatment risks and developing an individualized treatment plan for adult patients with bimaxillary protrusion. Moreover, the equation in predicating area of alveolar bone may reduce the risks of placing the teeth out of the bone boundary during 3D digital setups.


Subject(s)
Incisor , Tooth Movement Techniques , Adult , Bone Remodeling , Cephalometry , Cone-Beam Computed Tomography , Humans , Incisor/diagnostic imaging , Maxilla/diagnostic imaging , Retrospective Studies
6.
Am J Orthod Dentofacial Orthop ; 158(6): 868-877, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33008709

ABSTRACT

This case report describes the treatment of a patient with congenital loss of both mandibular lateral incisors and severely retroclined maxillary incisors. The treatment included bilateral extraction of the maxillary first premolars, accurate 3-digital setup, a 2-stage torque control strategy, and intricate mechanic management. The dilemma of tooth-size discrepancy was solved by ideal torque control to avoid interproximal enamel reduction. An ideal Class I molar and canine relation, as well as canine guidance in the lateral excursion movement, was achieved with good stability.


Subject(s)
Incisor , Molar , Bicuspid , Dental Occlusion , Humans , Maxilla/diagnostic imaging
7.
Stem Cells Int ; 2020: 2016809, 2020.
Article in English | MEDLINE | ID: mdl-32215014

ABSTRACT

Most mesenchymal stem cells reside in a niche of low oxygen tension. Iron-chelating agents such as CoCl2 and deferoxamine have been utilized to mimic hypoxia and promote cell growth. The purpose of the present study was to explore whether a supplement of succinate, a natural metabolite of the tricarboxylic acid (TCA) cycle, can mimic hypoxia condition to promote human periodontal ligament cells (hPDLCs). Culturing hPDLCs in hypoxia condition promoted cell proliferation, migration, and osteogenic differentiation; moreover, hypoxia shifted cell metabolism from oxidative phosphorylation to glycolysis with accumulation of succinate in the cytosol and its release into culture supernatants. The succinate supplement enhanced hPDLC proliferation, migration, and osteogenesis with decreased succinate dehydrogenase (SDH) expression and activity, as well as increased hexokinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), suggesting metabolic reprogramming from oxidative phosphorylation to glycolysis in a normal oxygen condition. The succinate supplement in cell cultures promoted intracellular succinate accumulation while stabilizing hypoxia inducible factor-1α (HIF-1α), leading to a state of pseudohypoxia. Moreover, we demonstrate that hypoxia-induced proliferation was G-protein-coupled receptor 91- (GPR91-) dependent, while exogenous succinate-elicited proliferation involved the GPR91-dependent and GPR91-independent pathway. In conclusion, the succinate supplement altered cell metabolism in hPDLCs, induced a pseudohypoxia condition, and enhanced proliferation, migration, and osteogenesis of mesenchymal stem cells in vitro.

8.
Huan Jing Ke Xue ; 40(5): 2287-2294, 2019 May 08.
Article in Chinese | MEDLINE | ID: mdl-31087868

ABSTRACT

The synergistic process and mechanism of aluminum (Al)-substituted ferrihydrites on arsenic[As(Ⅴ)] and cadmium[Cd(Ⅱ)] were studied under laboratory conditions. The results showed that synergistic adsorption and coprecipitation of As and Cd by Al-substituted ferrihydrites was clearly affected by both the pH of solution and the order in which heavy metals were added. The solution in which As co-existed with Cd for 72 hours, at a pH of 6.0 to 6.5, the As and Cd adsorption capacity of Al-substituted ferrihydrites containing 20% Al (AF20) reached 60.9 mg·g-1 and 17.1 mg·g-1, respectively. The removal rates of As and Cd were 96.0% and 73.0%, respectively. Arsenic and Cd were synergistically adsorbed into the internal pores of AF20 particles, and the synergistic adsorption effect of AF20 on As and Cd was clear. Adding Cd to the solution containing As, for 72 hours, and with a pH of 6.1 to 6.5, the As and Cd adsorption capacity of AF20 was 58.1 mg·g-1 and 12.4 mg·g-1, respectively. The removal rates of As and Cd were 96.0% and 48.3%, respectively. Adsorption of As limited the fixation of Cd by AF20. When adding As to the solution containing Cd, for 72 hours, with a pH of 9.5 to 9.8, fixed amounts of As and Cd on AF20 were 20.9 mg·g-1 and 24.4 mg·g-1, respectively. The removal rates of As and Cd were 38.8% and 98.9%, respectively. The coprecipitation of As and Cd by AF20 was clear. The resulting insoluble As and Cd compounds distributed the Cd distribution in a sparse strip and impeded the further adsorption of As. The results show that Al-substituted ferrihydrites can synergistically adsorb and coprecipitate As and Cd in contaminated environmental media.

SELECTION OF CITATIONS
SEARCH DETAIL
...