Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Clin Vaccine Immunol ; 13(8): 953-7, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16893997

ABSTRACT

Human recombinant Fab fragments specific for the spike protein of severe acute respiratory syndrome coronavirus (SARS-CoV) were screened from a human Fab library, which was generated from RNAs from peripheral lymphocytes of convalescent SARS patients. Among 50 randomly picked clones, 12 Fabs specially reacted with S protein by an enzyme-linked immunosorbent assay. The microneutralizing test showed that one clone, designated M1A, had neutralizing activity on Vero E6 cells against SARS-CoV. DNA sequence analysis indicated that the light- and heavy-chain genes of M1A Fab belong to the kappa2a and 4f families, respectively. A neutralizing test on purified M1A demonstrated that 0.5 mg/ml of M1A completely inhibited SARS-CoV activity, with an absence of cytopathic effect for 7 days. Real-time fluorescence reverse transcription-PCR also proved the neutralizing capacity of M1A. These data showed that the number of virus copies was significantly reduced in the M1A-treated group, suggesting an important role for M1A in passive immunoprophylaxis against the SARS virus.


Subject(s)
Antibodies, Viral/immunology , Immunoglobulin Fab Fragments/immunology , Peptide Library , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Amino Acid Sequence , Antibodies, Viral/genetics , Antibodies, Viral/isolation & purification , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Variable Region/immunology , Immunologic Factors/chemistry , Immunologic Factors/immunology , Microbial Sensitivity Tests , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction
2.
Zhonghua Liu Xing Bing Xue Za Zhi ; 24(6): 484-6, 2003 Jun.
Article in Chinese | MEDLINE | ID: mdl-12848915

ABSTRACT

OBJECTIVE: To explore the temporal profile of serum antibody against coronavirus in patients with severe acute respiratory syndrome (SARS), and to evaluate the reliability of indirect immuno-fluorescence assay (IFA) in the diagnosis of SARS. METHODS: Clinically confirmed SARS patients, suspected SARS patients, and controls were included in the study. IFA was used to detect the serum antibody against SARS coronavirus. General information about the subjects was collected using a standard questionnaire. RESULTS: The positive rates of specific IgG and IgM against SARS virus within 10 days after onset of the disease were 55.1% and 16.3% respectively and then increased up to 89.8% for IgG and 65.3% for IgM. After 25 days of the onset of the disease, 90.9% patients became positive for both IgG and IgM. Results from chi-square for trend test revealed that the positive rates of both IgG and IgM increased with time (chi(2) for trend = 16.376, P = 0.00005 for IgG; chi(2) for trend = 28.736, P = 0.00000 for IgM). Sensitivity, specificity and agreement value of IFA regarding the diagnosis of SARS were all higher than 90%. CONCLUSION: IFA can be used to assist diagnosis of SARS after 10 days of the onset of disease.


Subject(s)
Antibodies, Viral/blood , Fluorescent Antibody Technique, Indirect/methods , Severe Acute Respiratory Syndrome/diagnosis , Severe acute respiratory syndrome-related coronavirus/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood
3.
Chin Sci Bull ; 48(10): 941-948, 2003.
Article in English | MEDLINE | ID: mdl-32214698

ABSTRACT

The genome sequence of the Severe Acute Respiratory Syndrome (SARS)-associated virus provides essential information for the identification of pathogen(s), exploration of etiology and evolution, interpretation of transmission and pathogenesis, development of diagnostics, prevention by future vaccination, and treatment by developing new drugs. We report the complete genome sequence and comparative analysis of an isolate (BJ01) of the coronavirus that has been recognized as a pathogen for SARS. The genome is 29725 nt in size and has 11 ORFs (Open Reading Frames). It is composed of a stable region encoding an RNA-dependent RNA polymerase (composed of 2 ORFs) and a variable region representing 4 CDSs (coding sequences) for viral structural genes (the S, E, M, N proteins) and 5 PUPs (putative uncharacterized proteins). Its gene order is identical to that of other known coronaviruses. The sequence alignment with all known RNA viruses places this virus as a member in the family of Coronaviridae. Thirty putative substitutions have been identified by comparative analysis of the 5 SARS-associated virus genome sequences in GenBank. Fifteen of them lead to possible amino acid changes (non-synonymous mutations) in the proteins. Three amino acid changes, with predicted alteration of physical and chemical features, have been detected in the S protein that is postulated to be involved in the immunoreactions between the virus and its host. Two amino acid changes have been detected in the M protein, which could be related to viral envelope formation. Phylogenetic analysis suggests the possibility of non-human origin of the SARS-associated viruses but provides no evidence that they are man-made. Further efforts should focus on identifying the etiology of the SARS-associated virus and ruling out conclusively the existence of other possible SARS-related pathogen(s).

SELECTION OF CITATIONS
SEARCH DETAIL
...