Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
J Gen Virol ; 89(Pt 3): 697-702, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18272760

ABSTRACT

Highly pathogenic avian influenza H5N1 virus has swept west across the globe and caused serious debates on the roles of migratory birds in virus circulation since the first large-scale outbreak in migratory birds of Lake Qinghai, 2005. In May 2006, another outbreak struck Lake Qinghai and six novel strains were isolated. To elucidate these QH06 viruses, the six isolates were subjected to whole-genome sequencing. Phylogenetic analyses show that QH06 viruses are derived from the lineages of Lake Qinghai, 2005. Five of the six novel isolates are adjacent to the strain A/Cygnus olor/Croatia/1/05, and the last one is related to the strain A/duck/Novosibirsk/02/05, an isolate of the flyway. Antigenic analyses suggest that QH06 and QH05 viruses are similar to each other. These findings implicate that QH06 viruses of Lake Qinghai may travel back via migratory birds, though not ruling out the possibility of local circulation of viruses of Lake Qinghai.


Subject(s)
Animal Migration , Birds/physiology , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds/epidemiology , Phylogeny , Animals , Birds/virology , Chickens/virology , China , Genome, Viral , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/virology , Mice , Neuraminidase/antagonists & inhibitors , Neuraminidase/genetics , Neuraminidase/immunology , Poultry Diseases/virology , Sequence Analysis, DNA
2.
Clin Vaccine Immunol ; 13(8): 953-7, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16893997

ABSTRACT

Human recombinant Fab fragments specific for the spike protein of severe acute respiratory syndrome coronavirus (SARS-CoV) were screened from a human Fab library, which was generated from RNAs from peripheral lymphocytes of convalescent SARS patients. Among 50 randomly picked clones, 12 Fabs specially reacted with S protein by an enzyme-linked immunosorbent assay. The microneutralizing test showed that one clone, designated M1A, had neutralizing activity on Vero E6 cells against SARS-CoV. DNA sequence analysis indicated that the light- and heavy-chain genes of M1A Fab belong to the kappa2a and 4f families, respectively. A neutralizing test on purified M1A demonstrated that 0.5 mg/ml of M1A completely inhibited SARS-CoV activity, with an absence of cytopathic effect for 7 days. Real-time fluorescence reverse transcription-PCR also proved the neutralizing capacity of M1A. These data showed that the number of virus copies was significantly reduced in the M1A-treated group, suggesting an important role for M1A in passive immunoprophylaxis against the SARS virus.


Subject(s)
Antibodies, Viral/immunology , Immunoglobulin Fab Fragments/immunology , Peptide Library , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Amino Acid Sequence , Antibodies, Viral/genetics , Antibodies, Viral/isolation & purification , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Variable Region/immunology , Immunologic Factors/chemistry , Immunologic Factors/immunology , Microbial Sensitivity Tests , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction
3.
Vaccine ; 24(7): 1028-34, 2006 Feb 13.
Article in English | MEDLINE | ID: mdl-16388880

ABSTRACT

BACKGROUND: In 2003, severe acute respiratory syndrome (SARS) resulted in hundreds of infections and deaths globally. We aim to assess immunogenicity and protective efficacy of purified inactivated Vero-cell SARS vaccine in monkeys. METHODS: The cultures of SARS coronavirus (SARS-CoV) BJ-01 strain infected Vero cells were inactivated with beta-propiolactone. Sequential procedures, including ultrafiltration, gel filtration and ion exchange chromatography, were performed to obtain purified inactivated SARS vaccine. The purified SARS vaccine was analyzed with electron microscope, HPLC and Western blotting. We immunized three groups of cynomolgus macaques fascicularis with adjuvant-containing purified vaccine, purified vaccine and unpurified vaccine, respectively, and a fourth group served as a control. Antibody titers were measured by plaque reduction neutralization test. The vaccinated monkeys were challenged with SARS-CoV BJ-01 strain to observe protective efficacy. Additionally, three groups of rhesus monkeys were immunized with different doses of the purified inactivated SARS vaccine (0.5, 1 and 2mug/time/monkey) on days 0 and 7, and the monkeys were challenged with SARS-CoV GZ-01 strain. We assessed the safety of the SARS vaccine and observed whether the antibody dependent enhancement (ADE) occurred under low levels of neutralizing antibody in rhesus. FINDINGS: The purity of SARS vaccine was 97.6% by HPLC identification and reacted with convalescent sera of SARS patients. The purified SARS vaccine induced high levels of neutralizing antibodies and prevented the replication of SARS-CoV in monkeys. Under low levels of neutralizing antibody, no exacerbation of clinical symptoms was observed when the immunized monkeys were challenged with SARS-CoV. In this preliminary animal trial, no side effects were detected when monkeys were immunized with purified SARS vaccine either at normal or large doses. INTERPRETATION: The purified inactivated SARS vaccine could induce high levels of neutralizing antibody, and protect the monkeys from the challenge of SARS-CoV. The SARS vaccine prepared in the study appeared to be safe in monkeys.


Subject(s)
Severe acute respiratory syndrome-related coronavirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Chlorocebus aethiops , Dose-Response Relationship, Immunologic , Immunization , Macaca fascicularis , Male , Severe Acute Respiratory Syndrome/prevention & control , Vaccines, Inactivated/immunology , Vero Cells , Viral Vaccines/adverse effects
4.
Virology ; 334(1): 74-82, 2005 Mar 30.
Article in English | MEDLINE | ID: mdl-15749124

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is not only responsible for receptor binding, but also a major antigenic determinant capable of inducing protective immunity. In this study, we demonstrated that the receptor-binding domain (RBD) of S protein is an important immunogenic site in patients with SARS and rabbits immunized with inactivated SARS-CoV. Serum samples from convalescent SARS patients and immunized rabbits had potent neutralizing activities against infection by pseudovirus expressing SARS-CoV S protein. Depletion of RBD-specific antibodies from patient or rabbit immune sera by immunoadsorption significantly reduced serum-mediated neutralizing activity, while affinity-purified anti-RBD antibodies had relatively higher potency neutralizing infectivity of SARS pseudovirus, indicating that the RBD of S protein is a critical neutralization determinant of SARS-CoV during viral infection and immunization. Two monoclonal antibodies (1A5 and 2C5) targeting at the RBD of S protein were isolated from mice immunized with inactivated SARS-CoV. Both 1A5 and 2C5 possessed potent neutralizing activities, although they directed against distinct conformation-dependant epitopes as shown by ELISA and binding competition assay. We further demonstrated that 2C5, but not 1A5, was able to block binding of the RBD to angiotensin-converting enzyme 2 (ACE2), the functional receptor on targeted cells. These data provide important information for understanding the antigenicity and immunogenicity of SARS-CoV and for designing SARS vaccines.


Subject(s)
Severe acute respiratory syndrome-related coronavirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/blood , Antibodies, Viral/isolation & purification , Antigens, Viral/chemistry , Antigens, Viral/genetics , Epitopes/chemistry , Epitopes/genetics , Humans , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Inbred BALB C , Neutralization Tests , Protein Structure, Tertiary , Rabbits , Severe acute respiratory syndrome-related coronavirus/genetics , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/prevention & control , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Vaccines/genetics
5.
Virology ; 334(1): 134-43, 2005 Mar 30.
Article in English | MEDLINE | ID: mdl-15749129

ABSTRACT

Inactivated severe acute respiratory syndrome-associated coronavirus (SARS-CoV) has been tested as a candidate vaccine against the re-emergence of SARS. In order to understand the efficacy and safety of this approach, it is important to know the antibody specificities generated with inactivated SARS-CoV. In the current study, a panel of twelve monoclonal antibodies (mAbs) was established by immunizing Balb/c mice with the inactivated BJ01 strain of SARS-CoV isolated from the lung tissue of a SARS-infected Chinese patient. These mAbs could recognize SARS-CoV-infected cells by immunofluorescence analysis (IFA). Seven of them were mapped to the specific segments of recombinant spike (S) protein: six on S1 subunit (aa 12-798) and one on S2 subunit (aa 797-1192). High neutralizing titers against SARS-CoV were detected with two mAbs (1A5 and 2C5) targeting at a subdomain of S protein (aa 310-535), consistent with the previous report that this segment of S protein contains the major neutralizing domain. Some of these S-specific mAbs were able to recognize cleaved products of S protein in SARS-CoV-infected Vero E6 cells. None of the remaining five mAbs could recognize either of the recombinant S, N, M, or E antigens by ELISA. This study demonstrated that the inactivated SARS-CoV was able to preserve the immunogenicity of S protein including its major neutralizing domain. The relative ease with which these mAbs were generated against SARS-CoV virions further supports that subunit vaccination with S constructs may also be able to protect animals and perhaps humans. It is somewhat unexpected that no N-specific mAbs were identified albeit anti-N IgG was easily identified in SARS-CoV-infected patients. The availability of this panel of mAbs also provided potentially useful agents with applications in therapy, diagnosis, and basic research of SARS-CoV.


Subject(s)
Severe acute respiratory syndrome-related coronavirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Viral/biosynthesis , Antigens, Viral/genetics , China , Chlorocebus aethiops , Epitope Mapping , Humans , Immunization , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Inbred BALB C , Neutralization Tests , Rabbits , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Spike Glycoprotein, Coronavirus , Vaccines, Inactivated/immunology , Vero Cells , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
6.
Zhonghua Liu Xing Bing Xue Za Zhi ; 24(6): 484-6, 2003 Jun.
Article in Chinese | MEDLINE | ID: mdl-12848915

ABSTRACT

OBJECTIVE: To explore the temporal profile of serum antibody against coronavirus in patients with severe acute respiratory syndrome (SARS), and to evaluate the reliability of indirect immuno-fluorescence assay (IFA) in the diagnosis of SARS. METHODS: Clinically confirmed SARS patients, suspected SARS patients, and controls were included in the study. IFA was used to detect the serum antibody against SARS coronavirus. General information about the subjects was collected using a standard questionnaire. RESULTS: The positive rates of specific IgG and IgM against SARS virus within 10 days after onset of the disease were 55.1% and 16.3% respectively and then increased up to 89.8% for IgG and 65.3% for IgM. After 25 days of the onset of the disease, 90.9% patients became positive for both IgG and IgM. Results from chi-square for trend test revealed that the positive rates of both IgG and IgM increased with time (chi(2) for trend = 16.376, P = 0.00005 for IgG; chi(2) for trend = 28.736, P = 0.00000 for IgM). Sensitivity, specificity and agreement value of IFA regarding the diagnosis of SARS were all higher than 90%. CONCLUSION: IFA can be used to assist diagnosis of SARS after 10 days of the onset of disease.


Subject(s)
Antibodies, Viral/blood , Fluorescent Antibody Technique, Indirect/methods , Severe Acute Respiratory Syndrome/diagnosis , Severe acute respiratory syndrome-related coronavirus/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood
7.
Chin Sci Bull ; 48(10): 941-948, 2003.
Article in English | MEDLINE | ID: mdl-32214698

ABSTRACT

The genome sequence of the Severe Acute Respiratory Syndrome (SARS)-associated virus provides essential information for the identification of pathogen(s), exploration of etiology and evolution, interpretation of transmission and pathogenesis, development of diagnostics, prevention by future vaccination, and treatment by developing new drugs. We report the complete genome sequence and comparative analysis of an isolate (BJ01) of the coronavirus that has been recognized as a pathogen for SARS. The genome is 29725 nt in size and has 11 ORFs (Open Reading Frames). It is composed of a stable region encoding an RNA-dependent RNA polymerase (composed of 2 ORFs) and a variable region representing 4 CDSs (coding sequences) for viral structural genes (the S, E, M, N proteins) and 5 PUPs (putative uncharacterized proteins). Its gene order is identical to that of other known coronaviruses. The sequence alignment with all known RNA viruses places this virus as a member in the family of Coronaviridae. Thirty putative substitutions have been identified by comparative analysis of the 5 SARS-associated virus genome sequences in GenBank. Fifteen of them lead to possible amino acid changes (non-synonymous mutations) in the proteins. Three amino acid changes, with predicted alteration of physical and chemical features, have been detected in the S protein that is postulated to be involved in the immunoreactions between the virus and its host. Two amino acid changes have been detected in the M protein, which could be related to viral envelope formation. Phylogenetic analysis suggests the possibility of non-human origin of the SARS-associated viruses but provides no evidence that they are man-made. Further efforts should focus on identifying the etiology of the SARS-associated virus and ruling out conclusively the existence of other possible SARS-related pathogen(s).

8.
Genomics Proteomics Bioinformatics ; 1(3): 180-92, 2003 Aug.
Article in English | MEDLINE | ID: mdl-15629030

ABSTRACT

Beijing has been one of the epicenters attacked most severely by the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) since the first patient was diagnosed in one of the city's hospitals. We now report complete genome sequences of the BJ Group, including four isolates (Isolates BJ01, BJ02, BJ03, and BJ04) of the SARS-CoV. It is remarkable that all members of the BJ Group share a common haplotype, consisting of seven loci that differentiate the group from other isolates published to date. Among 42 substitutions uniquely identified from the BJ group, 32 are non-synonymous changes at the amino acid level. Rooted phylogenetic trees, proposed on the basis of haplotypes and other sequence variations of SARS-CoV isolates from Canada, USA, Singapore, and China, gave rise to different paradigms but positioned the BJ Group, together with the newly discovered GD01 (GD-Ins29) in the same clade, followed by the H-U Group (from Hong Kong to USA) and the H-T Group (from Hong Kong to Toronto), leaving the SP Group (Singapore) more distant. This result appears to suggest a possible transmission path from Guangdong to Beijing/Hong Kong, then to other countries and regions.


Subject(s)
Genome, Viral , Severe acute respiratory syndrome-related coronavirus/genetics , Haplotypes , Humans , Mutation , Open Reading Frames , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...