Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Bone ; 187: 117199, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992453

ABSTRACT

Cementum is a vital component of periodontium, yet its regeneration remains a challenge. Pentraxin 3 (PTX3) is a multifunctional glycoprotein involved in extracellular matrix remodeling and bone metabolism regulation. However, the role of PTX3 in cementum formation and cementoblast differentiation has not been elucidated. In this study, we initially observed an increase in PTX3 expression during cementum formation and cementoblast differentiation. Then, overexpression of PTX3 significantly enhanced the differentiation ability of cementoblasts. While conversely, PTX3 knockdown exerted an inhibitory effect. Moreover, in Ptx3-deficient mice, we found that cementum formation was hampered. Furthermore, we confirmed the presence of PTX3 within the hyaluronan (HA) matrix, thereby activating the ITGB1/FAK/YAP1 signaling pathway. Notably, inhibiting any component of this signaling pathway partially reduced the ability of PTX3 to promote cementoblast differentiation. In conclusion, our study indicated that PTX3 promotes cementum formation and cementoblast differentiation, which is partially dependent on the HA/ITGB1/FAK/YAP1 signaling pathway. This research will contribute to our understanding of cementum regeneration after destruction.

2.
CNS Neurosci Ther ; 30(6): e14810, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887969

ABSTRACT

AIMS: To study the changes in cortical thickness and subcortical gray matter structures in children with complete spinal cord injury (CSCI), reveal the possible causes of dysfunction beyond sensory motor dysfunction after CSCI, and provide a possible neural basis for corresponding functional intervention training. METHODS: Thirty-seven pediatric CSCI patients and 34 age-, gender-matched healthy children as healthy controls (HCs) were recruited. The 3D high-resolution T1-weighted structural images of all subjects were obtained using a 3.0 Tesla MRI system. Statistical differences between pediatric CSCI patients and HCs in cortical thickness and volumes of subcortical gray matter structures were evaluated. Then, correlation analyses were performed to analyze the correlation between the imaging indicators and clinical characteristics. RESULTS: Compared with HCs, pediatric CSCI patients showed decreased cortical thickness in the right precentral gyrus, superior temporal gyrus, and posterior segment of the lateral sulcus, while increased cortical thickness in the right lingual gyrus and inferior occipital gyrus. The volume of the right thalamus in pediatric CSCI patients was significantly smaller than that in HCs. No significant correlation was found between the imaging indicators and the injury duration, sensory scores, and motor scores of pediatric CSCI patients. CONCLUSIONS: These findings demonstrated that the brain structural reorganizations of pediatric CSCI occurred not only in sensory motor areas but also in cognitive and visual related brain regions, which may suggest that the visual processing, cognitive abnormalities, and related early intervention therapy also deserve greater attention beyond sensory motor rehabilitation training in pediatric CSCI patients.


Subject(s)
Cerebral Cortex , Magnetic Resonance Imaging , Spinal Cord Injuries , Humans , Spinal Cord Injuries/pathology , Spinal Cord Injuries/diagnostic imaging , Female , Male , Child , Adolescent , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Gray Matter/pathology , Gray Matter/diagnostic imaging , Organ Size
3.
Spinal Cord ; 62(7): 414-420, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824252

ABSTRACT

STUDY DESIGN: Cross-sectional study. OBJECTIVES: To study the relationship between the structural changes in the cervical spinal cord (C2/3 level) and the sensorimotor function of children with traumatic thoracolumbar spinal cord injury (TLSCI) and to discover objective imaging biomarkers to evaluate its functional status. SETTING: Xuanwu Hospital, Capital Medical University, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, China. METHODS: 30 children (age range 5-13 years) with TLSCI and 11 typically developing (TD) children (age range 6-12 years) were recruited in this study. Based on whether there is preserved motor function below the neurological level of injury (NLI), the children with TLSCI are divided into the AIS A/B group (motor complete) and the AIS C/D group (motor incomplete). A Siemens Verio 3.0 T MR scanner was used to acquire 3D high-resolution anatomic scans covering the head and upper cervical spinal cord. Morphologic parameters of the spinal cord at the C2/3 level, including cross-sectional area (CSA), anterior-posterior width (APW), and left-right width (LRW) were obtained using the spinal cord toolbox (SCT; https://www.nitrc.org/projects/sct ). Correlation analyses were performed to compare the morphologic spinal cord parameters and clinical scores determined by the International Standard for Neurological Classification of Spinal Cord Injuries (ISNCSCI) examination. RESULTS: CSA and LRW in the AIS A/B group were significantly lower than those in the TD group and the AIS C/D group. LRW was the most sensitive imaging biomarker to differentiate the AIS A/B group from the AIS C/D group. Both CSA and APW were positively correlated with ISNCSCI sensory scores. CONCLUSIONS: Quantitative measurement of the morphologic spinal cord parameters of the cervical spinal cord can be used as an objective imaging biomarker to evaluate the neurological function of children with TLSCI. Cervical spinal cord atrophy in children after TLSCI was correlated with clinical grading; CSA and APW can reflect sensory function. Meanwhile, LRW has the potential to be an objective imaging biomarker for evaluating motor function preservation.


Subject(s)
Cervical Cord , Magnetic Resonance Imaging , Spinal Cord Injuries , Thoracic Vertebrae , Humans , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/pathology , Child , Male , Female , Cross-Sectional Studies , Adolescent , Cervical Cord/diagnostic imaging , Cervical Cord/injuries , Cervical Cord/pathology , Child, Preschool , Thoracic Vertebrae/diagnostic imaging , Thoracic Vertebrae/injuries , Lumbar Vertebrae/diagnostic imaging
4.
J Org Chem ; 89(7): 4774-4783, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38506335

ABSTRACT

A facile and efficient copper-catalyzed domino-double annulation strategy was developed from easily accessible o-aminobenzamides and 2-iodoisothiocyanates, which affords a direct pathway for the synthesis of tetracyclic fused 12H-benzo[4,5]thiazolo[2,3-b]quinazolin-12-ones in moderate to good yields without the addition of ligands, bases, and external oxidants. The reaction involves a C-N bond cleavage and the formation of a C-N/C-S bond in one step with the advantages of using an inexpensive copper catalyst and easy operation. Mechanistic studies suggest that this transformation proceeds via intermolecular condensation of o-aminobenzamides with 2-iodoisothiocyanates, followed by an intramolecular Ullmann-type cross-coupling cyclization reaction.

5.
J Org Chem ; 89(7): 4579-4594, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38506748

ABSTRACT

A palladium-catalyzed intermolecular [2 + 2 + 2] oxidative coupling-annulation of terminal alkenes and alkynes using copper(II) as the oxidant has been developed through direct C-C bond formation. These reactions provide effective access to multiaryl-substituted benzenes with high regioselectivity in the absence of any ligands. The features of this protocol are broad substrate scope, and high atom and step economy. The aggregation-induced emission properties of selected products were further investigated. These synthesized multiaryl-substituted benzenes may be worth exploring for further applications in the fields of advanced functional materials or drugs.

6.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119712, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521466

ABSTRACT

Inflammatory environments can trigger endoplasmic reticulum (ER) stress and lead to pyroptosis in various tissues and cells, including liver, brain, and immune cells. As a key factor of ER stress, DNA damage-inducible transcript 3 (DDIT3)/CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) is upregulated in osteoblasts during inflammatory stimulation. DDIT3/CHOP may therefore regulate osteoblast pyroptosis in inflammatory conditions. During this investigation, we found that lipopolysaccharides (LPS)/adenosine 5'-triphosphate (ATP) stimulation in vitro induced osteoblasts to undergo pyroptosis, and the expression of DDIT3/CHOP was increased during this process. The overexpression of DDIT3/CHOP further promoted osteoblast pyroptosis as evidenced by the increased expression of the inflammasome NLR family pyrin domain containing 3 (NLRP3) and ratios of caspase-1 p20/caspase-1 and cleaved gasdermin D (GSDMD)/GSDMD. To explore the specific mechanism of this effect, we found through fluorescence imaging and Western blot analysis that LPS/ATP stimulation promoted PTEN-induced kinase 1 (PINK1)/E3 ubiquitin-protein ligase parkin (Parkin)-mediated mitophagy in osteoblasts, and this alteration was suppressed by the DDIT3/CHOP overexpression, resulting in increased ratio of pyroptosis compared with the control groups. The impact of DDIT3/CHOP on pyroptosis in osteoblasts was reversed by the application of carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a specific mitophagy agonist. Therefore, our data demonstrated that DDIT3/CHOP promotes osteoblast pyroptosis by inhibiting PINK1/Parkin-mediated mitophagy in an inflammatory environment.


Subject(s)
Lipopolysaccharides , Pyroptosis , Lipopolysaccharides/pharmacology , Mitophagy , Caspase 1/metabolism , Caspase 1/pharmacology , Adenosine Triphosphate/metabolism , Osteoblasts/metabolism , Protein Kinases , Ubiquitin-Protein Ligases/pharmacology
7.
Food Chem X ; 21: 101236, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38406763

ABSTRACT

Despite the favorable biocompatibility of natural antimicrobial peptides (AMPs), their scarcity limits their practical application. Through rational design, the activity of AMPs can be enhanced to expand their application. In this study, we selected a natural sturgeon epidermal mucus peptide, AP-16 (APATPAAPALLPLWLL), as the model molecule and studied its conformational regulation and antimicrobial activity through amino acid substitutions and N-terminal lipidation. The structural and morphological transitions of the peptide self-assemblies were investigated using circular dichroism and transmission electron microscopy. Following amino acid substitution, the conformation of AL-16 (AKATKAAKALLKLWLL) did not change. Following N-terminal alkylation, the C8-AL-16 and C12-AL-16 conformations changed from random coil to ß-sheet or α-helix, and the self-assembly changed from nanofibers to nanospheres. AL-16, C8-AL-16, and C8-AL-16 presented significant antimicrobial activity against Pseudomonas and Shewanella at low concentrations. N-terminal alkylation effectively extended the shelf life of Litopenaeus vannamei. These results support the application of natural AMPs.

8.
Bone ; 182: 117058, 2024 May.
Article in English | MEDLINE | ID: mdl-38408589

ABSTRACT

The coordination of osteoblasts and osteoclasts is essential for bone remodeling. DNA damage inducible script 3 (DDIT3) is an important regulator of bone and participates in cell differentiation, proliferation, autophagy, and apoptosis. However, its role in bone remodeling remains unexplored. Here, we found that Ddit3 knockout (Ddit3-KO) enhanced both bone formation and resorption. The increased new bone formation and woven bone resorption, i.e., enhanced bone remodeling capacity, was found to accelerate bone defect healing in Ddit3-KO mice. In vitro experiments showed that DDIT3 inhibited both osteoblast differentiation and Raw264.7 cell differentiation by regulating autophagy. Cell coculture assay showed that Ddit3-KO decreased the ratio of receptor activator of nuclear factor-κß ligand (RANKL) to osteoprotegerin (OPG) in osteoblasts, and Ddit3-KO osteoblasts inhibited osteoclast differentiation. Meanwhile, DDIT3 knockdown (DDIT3-sh) increased receptor activator of nuclear factor-κß (RANK) expression in Raw264.7 cells, and DDIT3-sh Raw264.7 cells promoted osteoblast differentiation, whereas, DDIT3 overexpression had the opposite effect. Mechanistically, DDIT3 promoted autophagy partly by increasing ULK1 phosphorylation at serine555 (pULK1-S555) and decreasing ULK1 phosphorylation at serine757 (pULK1-S757) in osteoblasts, thereby inhibiting osteoblast differentiation. DDIT3 inhibited autophagy partly by decreasing pULK1-S555 in Raw264.7 cells, thereby suppressing osteoclastic differentiation. Taken together, our data indicate that DDIT3 is one of the elements regulating bone remodeling and bone healing, which may become a potential target in bone defect treatment.


Subject(s)
Autophagy-Related Protein-1 Homolog , Bone Remodeling , Osteoblasts , Osteoclasts , Transcription Factor CHOP , Animals , Mice , Autophagy , Bone Resorption/metabolism , Cell Differentiation/physiology , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteoprotegerin/metabolism , RANK Ligand/metabolism , Transcription Factor CHOP/metabolism , Autophagy-Related Protein-1 Homolog/metabolism
9.
Heliyon ; 10(2): e24569, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312693

ABSTRACT

In this study, we observed pediatric complete spinal cord injury (CSCI) patients receiving MI training and divided them into different groups according to the effect of motor imagery (MI) training on neuropathic pain (NP). Then, we retrospectively analysed the differences in brain structure of these groups before the MI training, identifying brain regions that may predict the effect of MI on NP. Thirty pediatric CSCI patients were included, including 12 patients who experienced NP during MI and 18 patients who did not experience NP during MI according to the MI training follow-up. The 3D high-resolution T1-weighted images of all subjects were obtained using a 3.0 T MRI system before MI training. A two-sample t-test was performed to evaluate the differences in gray matter volume (GMV) between patients who experienced NP and those who did not experience NP during MI. Receiver operating characteristic (ROC) analysis was performed to compute the sensitivity and specificity of the imaging biomarkers for the effect of MI on NP in pediatric CSCI patients. MI evoked NP in some of the pediatric CSCI patients. Compared with patients who did not experience NP, patients who experienced NP during MI showed larger GMV in the right primary sensorimotor cortex (PSMC) and insula. When using the GMV of the right PSMC and insula in combination as a predictor, the area under the curve (AUC) reached 0.824. Our study demonstrated that MI could evoke NP in some pediatric CSCI patients, but not in others. The individual differences in brain reorganization of the right PSMC and insula may contribute to the different effects of MI on NP. Moreover, the GMV of the right PSMC and insula in combination may be an effective indicator for screening pediatric CSCI patients before MI training therapy.

10.
J Magn Reson Imaging ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243392

ABSTRACT

BACKGROUND: The alternation of brain white matter (WM) network has been studied in adult spinal cord injury (SCI) patients. However, the WM network alterations in pediatric SCI patients remain unclear. PURPOSE: To evaluate WM network changes and their functional impact in children with thoracolumbar SCI (TSCI). STUDY TYPE: Prospective. SUBJECTS: Thirty-five pediatric patients with TSCI (8.94 ± 1.86 years, 8/27 males/females) and 34 age- and gender-matched healthy controls (HCs) participated in this study. FIELD STRENGTH/SEQUENCE: 3.0 T/DTI imaging using spin-echo echo-planar and T1-weighted imaging using 3D T1-weighted magnetization-prepared rapid gradient-echo sequence. ASSESSMENT: Pediatric SCI patients were evaluated for motor and sensory scores, injury level, time since injury, and age at injury. The WM network was constructed using a continuous tracing method, resulting in a 90 × 90 matrix. The global and regional metrics were obtained to investigate the alterations of the WM structural network. topology. STATISTICAL TESTS: Two-sample independent t-tests, chi-squared test, Mann-Whitney U-test, and Spearman correlation. Statistical significance was set at P < 0.05. RESULTS: Compared with HCs, pediatric TSCI patients displayed decreased shortest path length (Lp = 1.080 ± 0.130) and normalized Lp (λ = 5.020 ± 0.363), and increased global efficiency (Eg = 0.200 ± 0.015). Notably, these patients also demonstrated heightened regional properties in the orbitofrontal cortex, limbic system, default mode network, and several audio-visual-related regions. Moreover, the λ and Lp values negatively correlated with sensory scores. Conversely, nodal efficiency values in the right calcarine fissure and surrounding cortex positively correlated with sensory scores. The age at injury positively correlated with node degree in the left parahippocampal gyrus and nodal efficiency in the right posterior cingulate gyrus. DATA CONCLUSION: Reorganization of the WM networks in pediatric SCI patients is indicated by increased global and nodal efficiency, which may provide promising neuroimaging biomarkers for functional assessment of pediatric SCI. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 5.

11.
Neural Netw ; 171: 362-373, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38134599

ABSTRACT

Due to the ubiquity of graph-structured data, Graph Neural Network (GNN) have been widely used in different tasks and domains and good results have been achieved in tasks such as node classification and link prediction. However, there are still many challenges in representation learning of heterogeneous networks. Existing graph neural network models are partly based on homogeneous graphs, which do not take into account the rich semantic information of nodes and edges due to their different types; And partly based on heterogeneous graphs, which require predefined meta-structures (include meta-paths and meta-graphs) and do not take into account the different effects of different meta-structures on node representation. In this paper, we propose the MS-GAN model, which consists of four parts: graph structure learner, graph structure expander, graph structure filter and graph structure parser. The graph structure learner automatically generates a graph structure consisting of useful meta-paths by selecting and combining the sub-adjacent matrices in the original graph using a 1 × 1 convolution. The graph structure expander further generates a graph structure containing meta-graphs by Hadamard product based on the previous step. The graph structure filterer filters out graph structures that are more effective for downstream classification tasks based on diversity. The graph structure parser assigns different weights to graph structures consisting of different meta-structures by a semantic hierarchical attention. Finally, through experiments on four datasets and meta-structure visualization analysis, it is shown that MS-GAN can automatically generate useful meta-structures and assign different weights to different meta-structures.


Subject(s)
Learning , Neural Networks, Computer , Semantics , Software
12.
PeerJ ; 11: e16172, 2023.
Article in English | MEDLINE | ID: mdl-37842067

ABSTRACT

Objective: This study used functional magnetic resonance imaging (fMRI) to explore brain structural and related network changes in patients with spinal cord injury (SCI). Methods: Thirty-one right-handed SCI patients and 31 gender- and age-matched healthy controls (HC) were included. The gray matter volume (GMV) changes in SCI patients were observed using voxel-based morphometry (VBM). Then, these altered gray matter clusters were used as the regions of interest (ROIs) for whole-brain functional connectivity (FC) analysis to detect related functional changes. The potential association between GMV and FC values with the visual analog scale (VAS), the American Spinal Injury Association (ASIA) score, and the course of injuries was investigated through partial correlation analysis. Results: GMV of the frontal, temporal, and insular cortices was lower in the SCI group than in the HC group. No GMV changes were found in the primary sensorimotor area in the SCI group. Besides, the altered FC regions were not in the primary sensorimotor area but in the cingulate gyrus, supplementary motor area, precuneus, frontal lobe, and insular. Additionally, some of these altered GMV and FC regions were correlated with ASIA motor scores, indicating that higher cognitive regions can affect motor function in SCI patients. Conclusions: This study demonstrated that gray matter and related network reorganization in patients with SCI occurred in higher cognitive regions. Future rehabilitation strategies should focus more on cognitive functions.


Subject(s)
Motor Cortex , Sensorimotor Cortex , Spinal Cord Injuries , Humans , Gray Matter/diagnostic imaging , Spinal Cord Injuries/diagnostic imaging , Sensorimotor Cortex/diagnostic imaging , Cognition , Atrophy/complications , Motor Cortex/diagnostic imaging
13.
J Magn Reson Imaging ; 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37800893

ABSTRACT

BACKGROUND: Injury to the spinal cord of children may cause potential brain reorganizations, affecting their rehabilitation. However, the specific functional alterations of children after complete spinal cord injury (CSCI) remain unclear. PURPOSE: To explore the specific functional changes in local brain and the relationship with clinical characteristics in pediatric CSCI patients, clarifying the impact of CSCI on brain function in developing children. STUDY TYPE: Prospective. SUBJECTS: Thirty pediatric CSCI patients (7.83 ± 1.206 years) and 30 age-, gender-matched healthy children as controls (HCs) (8.77 ± 2.079 years). FIELD STRENGTH/SEQUENCE: 3.0 T/Resting-state functional MRI (rs-fMRI) using echo-planar-imaging (EPI) sequence. ASSESSMENT: Amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) were used to characterize regional neural function. STATISTICAL TESTS: Two-sample t-tests were used to compare the ALFF, fALFF, ReHo values of the brain between pediatric CSCI and HCs (voxel-level FWE correction, P < 0.05). Spearman correlation analyses were performed to analyze the associations between the ALFF, fALFF, ReHo values in altered regions and the injury duration, sensory motor scores of pediatric CSCI patients (P < 0.05). Then receiver operating characteristic (ROC) analysis was conducted to identify possible sensitive imaging indicators for clinical therapy. RESULTS: Compared with HCs, pediatric CSCI showed significantly decreased ALFF in the right postcentral gyrus (S1), orbitofrontal cortex, and left superior temporal gyrus (STG), increased ALFF in bilateral caudate nucleus, thalamus, middle cingulate gyrus, and cerebellar lobules IV-VI, and increased ReHo in left cerebellum Crus II and Brodmann area 21. The ALFF value in the right S1 negatively correlated with the pinprick and light touch sensory scores of pediatric CSCI. When the left STG was used as an imaging biomarker for pediatric CSCI, it achieved the highest area under the curve of 0.989. CONCLUSIONS: These findings may provide potential neural mechanisms for sensory motor and cognitive-emotional deficits in children after CSCI. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 5.

14.
Psychiatry Res Neuroimaging ; 335: 111706, 2023 10.
Article in English | MEDLINE | ID: mdl-37651834

ABSTRACT

As a key center for sensory information processing and transmission, the thalamus plays a crucial role in the development of posttraumatic stress disorder (PTSD). However, the changes in the thalamus and its role in regulating different PTSD symptoms remain unclear. In this study, fourteen PTSD patients and eighteen healthy controls (HCs) were recruited. All subjects underwent whole-brain T1-weighted three-dimensional Magnetization Prepared Rapid Gradient Echo Imaging scans. Gray matter volume (GMV) in the thalamus and its subregions were estimated using voxel-based morphometry (VBM). Compared to HCs, PTSD patients exhibited significant GMV reduction in the left thalamus and its subregions, including anterior, mediodorsal, ventral-lateral-dorsal (VLD), ventral-anterior, and ventral-lateral-ventral (VLV). Among the significantly reduced thalamic subregions, we found positive correlations between the GMV values of the left VLD and VLV and the re-experiencing symptoms score, arousal symptoms score, and total CAPS score. When using the symptom-related GMV values of left VLV and VLD in combination as a predictor, receiver operating characteristic (ROC) analysis revealed that the area under the curve (AUC) for binary classification reached 0.813. This study highlights the neurobiological mechanisms of PTSD related to thalamic changes and may provide potential imaging markers for diagnosis and therapy targets.


Subject(s)
Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain , Gray Matter/diagnostic imaging , Thalamus/diagnostic imaging
15.
J Periodontal Res ; 58(4): 841-851, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37243354

ABSTRACT

BACKGROUND AND OBJECTIVE: Periodontitis is a multifactorial inflammatory disease that leads to the destruction of supporting structures of the teeth. DNA damage-inducible transcript 3 (DDIT3) plays crucial roles in cell survival and differentiation. DDIT3 regulates bone mass and osteoclastogenesis in femur. However, the role of DDIT3 in periodontitis has not been elucidated. This research aimed to explore the role and mechanisms of DDIT3 in periodontitis. METHODS: DDIT3 gene knockout (KO) mice were generated using a CRISPR/Cas9 system. Experimental periodontitis models were established to explore the role of DDIT3 in periodontitis. The expression of DDIT3 in periodontal tissues was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). The alveolar bone phenotypes were observed by micro-CT and stereomicroscopy. The inflammation levels and osteoclast activity were examined by histological staining, immunostaining, and qRT-PCR. Bone marrow-derived macrophages (BMMs) were isolated to confirm the effects of DDIT3 on osteoclast formation and function in vitro. RESULTS: The increased expression of DDIT3 in murine inflamed periodontal tissues was detected. DDIT3 knockout aggravated alveolar bone loss and enhanced expression levels of inflammatory cytokines in murine periodontitis models. Increased osteoclast formation and higher expression levels of osteoclast-specific markers were observed in the inflamed periodontal tissues of KO mice. In vitro, DDIT3 deficiency promoted the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts and the bone resorption activity of mature osteoclasts. CONCLUSIONS: Our results demonstrate that DDIT3 deletion aggravated alveolar bone loss in experimental periodontitis through enhanced inflammatory reactions and osteoclastogenesis. The anti-inflammation and the inhibition of bone loss by DDIT3 in murine periodontitis provides a potential novel therapeutic strategy for periodontitis.


Subject(s)
Alveolar Bone Loss , Bone Resorption , Periodontitis , Animals , Mice , Alveolar Bone Loss/pathology , DNA Damage , Inflammation/pathology , Osteoclasts/metabolism , Periodontitis/drug therapy , RANK Ligand/metabolism
16.
IEEE Trans Pattern Anal Mach Intell ; 45(7): 8063-8080, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37018637

ABSTRACT

While graph representation learning methods have shown success in various graph mining tasks, what knowledge is exploited for predictions is less discussed. This paper proposes a novel Adaptive Subgraph Neural Network named AdaSNN to find critical structures in graph data, i.e., subgraphs that are dominant to the prediction results. To detect critical subgraphs of arbitrary size and shape in the absence of explicit subgraph-level annotations, AdaSNN designs a Reinforced Subgraph Detection Module to search subgraphs adaptively without heuristic assumptions or predefined rules. To encourage the subgraph to be predictive at the global scale, we design a Bi-Level Mutual Information Enhancement Mechanism including both global-aware and label-aware mutual information maximization to further enhance the subgraph representations in the perspective of information theory. By mining critical subgraphs that reflect the intrinsic property of a graph, AdaSNN can provide sufficient interpretability to the learned results. Comprehensive experimental results on seven typical graph datasets demonstrate that AdaSNN has a significant and consistent performance improvement and provides insightful results.

17.
J Org Chem ; 88(4): 2190-2206, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36724037

ABSTRACT

A copper-promoted aerobic oxidative [3+2] cycloaddition reaction for the synthesis of various substituted pyrazoles from N,N-disubstituted hydrazines with alkynoates in the presence of bases is developed. This work involves a direct C(sp3)-H functionalization and the formation of new C-C/C-N bonds. In this strategy, inexpensive and easily available Cu2O serves as the promoter and air acts as the green oxidant. The reaction exhibits the advantages of high atom and step economy, high regioselectivity, and easy operation.

18.
J Neurotrauma ; 40(9-10): 931-938, 2023 05.
Article in English | MEDLINE | ID: mdl-35950623

ABSTRACT

This study aims to investigate the brain gray matter volume (GMV) alterations of pediatric complete thoracolumbar spinal cord injury (SCI) without fracture or dislocation (SCIWOFD) using voxel-based morphometry (VBM) analysis and assess the sensitive neuroimaging biomarkers that may be surrogate targets to enhance brain plasticity. A total of 52 pediatric subjects (age range, 6-12 years), including 25 pediatric SCIWOFD patients and 27 typically developing (TD) children were recruited. An independent two-sample t test was performed to assess between-group differences of brain GMV. Partial correlation analyses were performed to explore the correlations between GMV values and The International Standards for Neurological Classification of Spinal Cord Injury scores, age at the time of injury, time after initial SCI. Receiver operating characteristic analysis was performed to compute the sensitivity and specificity of the imaging biomarkers for pediatric SCIWOFD diagnosis. As for the results, pediatric SCIWOFD patients showed significantly decreased GMV of bilateral cerebellum lobule VIII, right middle occipital gyrus and putamen (PUT), left pallidum (PAL) and thalamus, and increased GMV of vermis III, right cerebellum lobule VI, and supramarginal gyrus. In addition, GMV of left PAL and right PUT were negatively correlated with the pinprick/light touch sensory scores in pediatric SCIWOFD patients. Finally, when using the GMV values of left PAL and right PUT in combination as the predictor, area under the curve reached the highest-0.93. These findings provided evidence that the brain undergoes GMV changes after pediatric SCIWOFD, which may suggest important targets for functional remodeling after SCI in children and provide valuable information for the development of novel and effective rehabilitation therapies in the future.


Subject(s)
Fractures, Bone , Spinal Cord Injuries , Humans , Child , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Spinal Cord Injuries/diagnostic imaging , Parietal Lobe
19.
J Org Chem ; 88(1): 272-284, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36521048

ABSTRACT

A facile and efficient catalyst-/metal-/oxidant-free DBU-promoted deaminative thiolation reaction of 1H-benzo[d]imidazol-2-amines and benzo[d]oxazol-2-amines has been developed at room temperature conditions in a one-pot protocol. This practical three-component strategy represents a novel and environmentally friendly reaction pathway toward the straightforward synthesis of various 2-thio-1H-benzo[d]imidazoles and 2-thiobenzo[d]oxazoles using carbon disulfide as a sulfur source through C-N bond cleavage and C-S bond formation process. Different types of 1H-benzo[d]imidazol-2-amines, benzo[d]oxazol-2-amines, and organic bromides are suitable substrates. The gram-scale and late-stage modification experiments provide the potential applications based on this methodology in the field of organic and medicinal chemistry.

20.
Front Neurosci ; 16: 996325, 2022.
Article in English | MEDLINE | ID: mdl-36408378

ABSTRACT

To investigate the reorganizations of gray matter volume (GMV) in each subregion of primary motor cortex (M1) after incomplete cervical cord injury (ICCI) and to explore the differences in functional connectivity (FC) between the M1 subregions and the whole brain, and further to disclose the potential value of each M1 subregion in motor function rehabilitation of ICCI patients. Eighteen ICCI patients and eighteen age- and gender- matched healthy controls (HCs) were recruited in this study. The 3D high-resolution T1-weighted structural images and resting-state functional magnetic resonance imaging (rs-fMRI) of all subjects were obtained using a 3.0 Tesla MRI system. Based on the Human Brainnetome Atlas, the structural and functional changes of M1 subregions (including A4hf, A6cdl, A4ul, A4t, A4tl, A6cvl) in ICCI patients were analyzed by voxel-based morphometry (VBM) and seed-based FC, respectively. Compared with HCs, no structural changes in the M1 subregions of ICCI patients was detected. However, when compared with HCs, ICCI patients exhibited decreased FC in visual related areas (lingual gyrus, fusiform gyrus) and sensorimotor related areas (primary sensorimotor cortex) when the seeds were located in bilateral A4hf, A4ul, and decreased FC in visual related areas (lingual gyrus, fusiform gyrus) and cognitive related areas (temporal pole) when the seed was located in the left A4t. Moreover, when the seeds were located in the bilateral A6cdl, decreased FC in visual related areas (lingual gyrus, fusiform gyrus, calcarine gyrus) was also observed. Our findings demonstrated that each of the M1 regions had diverse FC reorganizations, which may provide a theoretical basis for the selection of precise stimulation targets, such as transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tCDS), meanwhile, our results may reveal the possible mechanism of visual feedback and cognitive training to promote motor rehabilitation.

SELECTION OF CITATIONS
SEARCH DETAIL
...