Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 340: 342-360, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34695522

ABSTRACT

Owing to its intricate pathophysiology, cerebral stroke is a serious medical condition caused by interruption or obstruction of blood supply (blockage of vasculature) to the brain tissues which results in diminished supply of essential nutrients and oxygen (hypoxia) and ultimate necrosis of neuronal tissues. A prompt risks assessment and immediate rational therapeutic plan with proficient neuroprotection play critically important role in the effective management of this neuronal emergency. Various conventional medications are being used for treatment of acute ischemic cerebral stroke but fibrinolytic agents, alone or in combination with other agents are considered the mainstay. These clot-busting agents effectively restore blood supply (reperfusion) to ischemic regions of the brain; however, their clinical significance is hampered due to various factors such as short plasma half-life, limited distribution to brain tissues due to the presence of highly efficient physiological barrier, blood brain barrier (BBB), and lacking of target-specific delivery to the ischemic brain regions. To alleviate these issues, various types of nanomedicines such as polymeric nanoparticles (NPs), liposomes, nanoemulsion, micelles and dendrimers have been designed and evaluated. The implication of these newer therapies (nanomedicines) have revolutionized the therapeutic outcomes by improving the plasma half-life, permeation across BBB, efficient distribution to ischemic cerebral tissues and neuroprotection. Furthermore, the adaptation of some diverse techniques including PEGylation, tethering of targeting ligands on the surfaces of nanomedicines, and pH responsive features have also been pondered. The implication of these emerging adaptations have shown remarkable potential in maximizing the targeting efficiency of drugs to ischemic brain tissues, simultaneous delivery of drugs and imaging agents (for early prognosis as well as monitoring of therapy), and therapeutic outcomes such as long-term neuroprotection.


Subject(s)
Brain Ischemia , Nanoparticles , Stroke , Blood-Brain Barrier , Brain Ischemia/drug therapy , Humans , Nanomedicine , Stroke/drug therapy
2.
Opt Express ; 28(1): 194-204, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-32118950

ABSTRACT

With low toxicity and high abundance of silicon, silicon nanocrystal (Si-NC) based white light-emitting device (WLED) is expected to be an alternative promising choice for general lighting in a cost-effective and environmentally friendly manner. Therefore, an all-inorganic Si-NC based WLED was reported for the first time in this paper. The active layer was made by mixing freestanding Si-NCs with hydrogen silsesquioxane (HSQ), followed by annealing and preparing the carrier transport layer and electrodes to complete the fabrication of an LED. Under forward biased condition, the electroluminescence (EL) spectrum of the LED showed a broadband spectrum. It was attributed to the mechanism of differential passivation of Si-NCs. The performance of LED could be optimized by modifying the annealing temperature and ratio of Si-NCs to HSQ in the active layer. The external quantum efficiency (EQE) peak of the Si WLED was 1.0% with a corresponding luminance of 225.8 cd/m2, and the onset voltage of the WLED was 2.9V. The chromaticity of the WLED indicated a warm white light emission.

SELECTION OF CITATIONS
SEARCH DETAIL
...