Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Microbiol Spectr ; : e0363722, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36847523

ABSTRACT

Circular RNAs (circRNAs) are an important subclass of noncoding RNAs implicated in the regulation of multiple biological processes. However, the functional involvement of circRNAs in the pathogenesis of influenza A viruses (IAVs) remains largely unknown. Here, we employed RNA sequencing (RNA-Seq) to examine the differentially expressed circRNAs in mouse lung tissues challenged or not challenged with IAV to evaluate the impact of viral infection on circRNAs in vivo. We observed that 413 circRNAs exhibited significantly altered levels following IAV infection. Among these, circMerTK, the derivative of myeloid-epithelial-reproductive tyrosine kinase (MerTK) pre-mRNA, was highly induced by IAV. Interestingly, circMerTK expression was also increased upon infection with multiple DNA and RNA viruses in human and animal cell lines, and thus it was selected for further studies. Poly(I:C) and interferon ß (IFN-ß) stimulated circMerTK expression, while RIG-I knockout and IFNAR1 knockout cell lines failed to elevate circMerTK levels after IAV infection, demonstrating that circMerTK is regulated by IFN signaling. Furthermore, circMerTK overexpression or silencing accelerated or impeded IAV and Sendai virus replication, respectively. Silencing circMerTK enhanced the production of type I IFNs and interferon-stimulating genes (ISGs), whereas circMerTK overexpression suppressed their expression at both the mRNA and protein levels. Notably, altering circMerTK expression had no effect on the MerTK mRNA level in cells infected or not infected with IAV, and vice versa. In addition, human circMerTK and mouse homologs functioned similarly in antiviral responses. Together, these results identify circMerTK as an enhancer of IAV replication through suppression of antiviral immunity. IMPORTANCE CircRNAs are an important class of noncoding RNAs characterized by a covalently closed circular structure. CircRNAs have been proven to impact numerous cellular processes, where they conduct specialized biological activities. In addition, circRNAs are believed to play a crucial role in regulating immune responses. Nevertheless, the functions of circRNAs in the innate immunity against IAV infection remain obscure. In this study, we employed transcriptomic analysis to investigate the alterations in circRNAs expression following IAV infection in vivo. It was found that expression of 413 circRNAs was significantly altered, of which 171 were upregulated, and 242 were downregulated following the IAV infection. Interestingly, circMerTK was identified as a positive regulator of IAV replication in both human and mouse hosts. CircMerTK was shown to influence IFN-ß production and its downstream signaling, enhancing IAV replication. This finding provides new insights into the critical roles of circRNAs in regulating antiviral immunity.

2.
J Virol ; 96(7): e0020022, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35293768

ABSTRACT

Spleen tyrosine kinase (Syk) has recently come forth as a critical regulator of innate immune response. Previous studies identify Syk as a key kinase for STAT1 activation at the early stage of influenza A virus (IAV) infection that is involved in initial antiviral immunity. However, the involvement of Syk in host antiviral immunity during the late phase of IAV infection and its effect on pathogenesis of the virus remain unknown. Here, we found through time course studies that Syk restrained antiviral immune response at the late stage of IAV infection, thereby promoting viral replication. Depletion of Syk suppressed IAV replication in vitro, whereas ectopic expression of Syk facilitated viral replication. Moreover, Syk-deficient mice were employed, and we observed that knockout of Syk rendered mice more resistant to IAV infection, as evidenced by a lower degree of lung injury, slower body weight loss, and an increased survival rate of Syk knockout mice challenged with IAV. Furthermore, we revealed that Syk repressed the interferon response at the late stage of viral infection. Loss of Syk potentiated the expression of type I and III interferons in both Syk-depleted cells and mice. Mechanistically, Syk interacted with TBK1 and modulated its phosphorylation status, thereby impeding TBK1 activation and restraining innate immune signaling that governs interferon response. Together, these findings unveil a role of Syk in temporally regulating host antiviral immunity and advance our understanding of complicated mechanisms underlying regulation of innate immunity against viral invasion. IMPORTANCE Innate immunity must be tightly controlled to eliminate invading pathogens while avoiding autoimmune or inflammatory diseases. Syk is essential for STAT1 activation at the early stage of IAV infection, which is critical for initial antiviral responses. Surprisingly, here a time course study showed that Syk suppressed innate immunity during late phases of IAV infection and thereby promoted IAV replication. Syk deficiency enhanced the expression of type I and III interferons, inhibited IAV replication, and rendered mice more resistant to IAV infection. Syk impaired innate immune signaling through impeding TBK1 activation. These data reveal that Syk participates in the initiation of antiviral defense against IAV infection and simultaneously contributes to the restriction of innate immunity at the late stage of viral infection, suggesting that Syk serves a dual function in regulating antiviral responses. This finding provides new insights into complicated mechanisms underlying interaction between virus and host immune system.


Subject(s)
Immunity, Innate , Influenza A virus , Orthomyxoviridae Infections , Animals , Antiviral Agents/metabolism , Host Microbial Interactions/immunology , Humans , Interferons/metabolism , Mice , Orthomyxoviridae Infections/enzymology , Orthomyxoviridae Infections/immunology , Syk Kinase/genetics , Syk Kinase/immunology , Virus Replication
3.
Sheng Wu Gong Cheng Xue Bao ; 37(11): 3933-3944, 2021 Nov 25.
Article in Chinese | MEDLINE | ID: mdl-34841796

ABSTRACT

Long noncoding RNAs (lncRNAs) are a class of RNA molecules that are greater than 200 nt in length and do not have protein-coding capabilities or encode micropeptides only. LncRNAs are involved in the regulation of cell proliferation, differentiation, apoptosis and other biological processes, and are closely associated with the occurrence, recurrence and metastasis of a variety of malignant hematologic diseases. This article summarizes the function, regulatory mechanism and potential clinical application of lncRNAs in leukemia. In general, lncRNAs regulate the occurrence and development of leukemia and the multi-drug resistance in chemotherapy through epigenetic modification, ribosomal RNA transcription, competitive binding with miRNA, modulating glucose metabolic pathway, and activating tumor-related signaling pathway. Studies on lncRNAs provide new references for understanding the pathogenesis of leukemia, uncovering new prognostic markers and potential therapeutic targets, and addressing the problems of drug resistance and post-treatment recurrence in patients in clinical treatment of leukemia.


Subject(s)
Leukemia , MicroRNAs , Neoplasms , RNA, Long Noncoding , Cell Proliferation , Humans , Leukemia/genetics , RNA, Long Noncoding/genetics
4.
Front Microbiol ; 12: 698001, 2021.
Article in English | MEDLINE | ID: mdl-34566910

ABSTRACT

African swine fever (ASF) is an acute lethal hemorrhagic viral disease in domestic pigs and wild boars; is widely epidemic in Africa, Europe, Asia, and Latin America; and poses a huge threat to the pig industry worldwide. ASF is caused by the infection of the ASF virus (ASFV), a cytoplasmic double-stranded DNA virus belonging to the Asfarviridae family. Here, we review how the virus regulates the host immune response and its mechanisms at different levels, including interferon modulation, inflammation, apoptosis, antigen presentation, and cellular immunity.

5.
Front Microbiol ; 12: 672026, 2021.
Article in English | MEDLINE | ID: mdl-34239508

ABSTRACT

Viral infections can cause rampant disease in human beings, ranging from mild to acute, that can often be fatal unless resolved. An acute viral infection is characterized by sudden or rapid onset of disease, which can be resolved quickly by robust innate immune responses exerted by the host or, instead, may kill the host. Immediately after viral infection, elements of innate immunity, such as physical barriers, various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, provide the first line of defense for viral clearance. Innate immunity not only plays a critical role in rapid viral clearance but can also lead to disease progression through immune-mediated host tissue injury. Although elements of antiviral innate immunity are armed to counter the viral invasion, viruses have evolved various strategies to escape host immune surveillance to establish successful infections. Understanding complex mechanisms underlying the interaction between viruses and host's innate immune system would help develop rational treatment strategies for acute viral infectious diseases. In this review, we discuss the pathogenesis of acute infections caused by viral pathogens and highlight broad immune escape strategies exhibited by viruses.

6.
Viruses ; 12(9)2020 09 18.
Article in English | MEDLINE | ID: mdl-32961897

ABSTRACT

Some coronaviruses are zoonotic viruses of human and veterinary medical importance. The novel coronavirus, severe acute respiratory symptoms coronavirus 2 (SARS-CoV-2), associated with the current global pandemic, is characterized by pneumonia, lymphopenia, and a cytokine storm in humans that has caused catastrophic impacts on public health worldwide. Coronaviruses are known for their ability to evade innate immune surveillance exerted by the host during the early phase of infection. It is important to comprehensively investigate the interaction between highly pathogenic coronaviruses and their hosts. In this review, we summarize the existing knowledge about coronaviruses with a focus on antiviral immune responses in the respiratory and intestinal tracts to infection with severe coronaviruses that have caused epidemic diseases in humans and domestic animals. We emphasize, in particular, the strategies used by these coronaviruses to circumvent host immune surveillance, mainly including the hijack of antigen-presenting cells, shielding RNA intermediates in replication organelles, 2'-O-methylation modification for the evasion of RNA sensors, and blocking of interferon signaling cascades. We also provide information about the potential development of coronavirus vaccines and antiviral drugs.


Subject(s)
Antiviral Agents/immunology , Coronavirus Infections/virology , Coronavirus/immunology , Immune Evasion , Pneumonia, Viral/virology , Antiviral Agents/therapeutic use , Betacoronavirus/immunology , COVID-19 , Coronavirus/classification , Coronavirus/physiology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Cytokines/immunology , Immunity, Innate , Immunity, Mucosal , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , SARS-CoV-2 , Signal Transduction , Viral Tropism
SELECTION OF CITATIONS
SEARCH DETAIL
...