Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Cell Physiol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721633

ABSTRACT

The intricate orchestration of osteoporosis (OP) pathogenesis remains elusive. Mounting evidence suggests that angiogenesis-driven osteogenesis serves as a crucial foundation for maintaining bone homeostasis. This study aimed to explore the potential of the endothelial platelet-derived growth factor receptor-ß (PDGFR-ß) in mitigating bone loss through its facilitation of H-type vessel formation. Our findings demonstrate that the expression level of endothelial PDGFR-ß is reduced in samples obtained from individuals suffering from OP, as well as in ovariectomy mice. Depletion of PDGFR-ß in endothelial cells ameliorates angiogenesis-mediated bone formation in mice. The regulatory influence of endothelial PDGFR-ß on H-type vessels is mediated through the PDGFRß-P21-activated kinase 1-Notch1 intracellular domain signaling cascade. In particular, the endothelium-specific enhancement of PDGFR-ß facilitates H-type vessels and their associated bone formation in OP. Hence, the strategic targeting of endothelial PDGFR-ß emerges as a promising therapeutic approach for the management of OP in the near future.

2.
Int J Biol Sci ; 20(7): 2555-2575, 2024.
Article in English | MEDLINE | ID: mdl-38725861

ABSTRACT

Staphylococcus aureus (S. aureus) persistence in macrophages, potentially a reservoir for recurrence of chronic osteomyelitis, contributes to resistance and failure in treatment. As the mechanisms underlying survival of S. aureus in macrophages remain largely unknown, there has been no treatment approved. Here, in a mouse model of S. aureus osteomyelitis, we identified significantly up-regulated expression of SLC7A11 in both transcriptomes and translatomes of CD11b+F4/80+ macrophages, and validated a predominant distribution of SLC7A11 in F4/80+ cells around the S. aureus abscess. Importantly, pharmacological inhibition or genetic knockout of SLC7A11 promoted the bactericidal function of macrophages, reduced bacterial burden in the bone and improved bone structure in mice with S. aureus osteomyelitis. Mechanistically, aberrantly expressed SLC7A11 down-regulated the level of intracellular ROS and reduced lipid peroxidation, contributing to the impaired bactericidal function of macrophages. Interestingly, blocking SLC7A11 further activated expression of PD-L1 via the ROS-NF-κB axis, and a combination therapy of targeting both SLC7A11 and PD-L1 significantly enhanced the efficacy of clearing S. aureus in vitro and in vivo. Our findings suggest that targeting both SLC7A11 and PD-L1 is a promising therapeutic approach to reprogram the bactericidal function of macrophages and promote bacterial clearance in S. aureus osteomyelitis.


Subject(s)
Macrophages , Osteomyelitis , Staphylococcal Infections , Staphylococcus aureus , Animals , Osteomyelitis/microbiology , Osteomyelitis/metabolism , Osteomyelitis/genetics , Mice , Macrophages/metabolism , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism
3.
Int J Biol Macromol ; 270(Pt 2): 132029, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704064

ABSTRACT

Cuproptosis affects osteosarcoma locally, and the exploitation of cuproptosis-related biomaterials for osteosarcoma treatment is still in its infancy. We designed and synthesized a novel injectable gel of Cu ion-coordinated Tremella fuciformis polysaccharide (TFP-Cu) for antiosteosarcoma therapy. This material has antitumor effects, the ability to stimulate immunity and promote bone formation, and a controlled Cu2+ release profile in smart response to tumor microenvironment stimulation. TFP-Cu can selectively inhibit the proliferation of K7M2 tumor cells by arresting the cell cycle and promoting cell apoptosis and cuproptosis. TFP-Cu also promoted the M1 polarization of RAW264.7 cells and regulated the immune microenvironment. These effects increased osteogenic gene and protein expression in MC3T3-E1 cells. TFP-Cu could significantly limit tumor growth in tumor-bearing mice by inducing tumor cell apoptosis and improving the activation of anti-CD8 T cell-mediated immune responses. Therefore, TFP-Cu could be a potential candidate for treating osteosarcoma and bioactive drug carrier for further cancer-related applications.

4.
Redox Biol ; 67: 102893, 2023 11.
Article in English | MEDLINE | ID: mdl-37741045

ABSTRACT

BACKGROUND: DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a novel instigator for mitochondrial dysfunction, and plays an important role in the pathogenesis of cardiovascular diseases. However, the role and mechanism of DNA-PKcs in angiotensin II (Ang II)-induced vascular remodeling remains obscure. METHODS: Rat aortic smooth muscle cells (SMC) and VSMC-specific DNA-PKcs knockout (DNA-PKcsΔVSMC) mice were employed to examine the role of DNA-PKcs in vascular remodeling and the underlying mechanisms. Blood pressure of mice was monitored using the tail-cuff and telemetry methods. The role of DNA-PKcs in vascular function was evaluated using vascular relaxation assessment. RESULTS: In the tunica media of remodeled mouse thoracic aortas, and renal arteries from hypertensive patients, elevated DNA-PKcs expression was observed along with its cytoplasmic translocation from nucleus, suggesting a role for DNA-PKcs in vascular remodeling. We then infused wild-type (DNA-PKcsfl/fl) and DNA-PKcsΔVSMC mice with Ang II for 14 days to establish vascular remodeling, and demonstrated that DNA-PKcsΔVSMC mice displayed attenuated vascular remodeling through inhibition of dedifferentiation of VSMCs. Moreover, deletion of DNA-PKcs in VSMCs alleviated Ang II-induced vasodilation dysfunction and hypertension. Mechanistic investigations denoted that Ang II-evoked rises in cytoplasmic DNA-PKcs interacted with dynamin-related protein 1 (Drp1) at its TQ motif to phosphorylate Drp1S616, subsequently promoting mitochondrial fragmentation and dysfunction, as well as reactive oxygen species (ROS) production. Treatment of irbesartan, an Ang II type 1 receptor (AT1R) blocker, downregulated DNA-PKcs expression in VSMCs and aortic tissues following Ang II administration. CONCLUSION: Our data revealed that cytoplasmic DNA-PKcs in VSMCs accelerated Ang II-induced vascular remodeling by interacting with Drp1 at its TQ motif and phosphorylating Drp1S616 to provoke mitochondrial fragmentation. Maneuvers targeting DNA-PKcs might be a valuable therapeutic option for the treatment of vascular remodeling and hypertension.


Subject(s)
Angiotensin II , Hypertension , Humans , Mice , Rats , Animals , Angiotensin II/metabolism , Vascular Remodeling/physiology , Catalytic Domain , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Hypertension/metabolism , DNA/metabolism , Myocytes, Smooth Muscle/metabolism
5.
Front Cell Infect Microbiol ; 13: 1187543, 2023.
Article in English | MEDLINE | ID: mdl-37529351

ABSTRACT

Introduction: Staphylococcus aureus (S. aureus) osteomyelitis causes a variety of metabolism disorders in microenvironment and cells. Defining the changes in cholesterol metabolism and identifying key factors involved in cholesterol metabolism disorders during S. aureus osteomyelitis is crucial to understanding the mechanisms of S. aureus osteomyelitis and is important in designing host-directed therapeutic strategies. Methods: In this study, we conducted in vitro and in vivo experiments to define the effects of S. aureus osteomyelitis on cholesterol metabolism, as well as the role of Apolipoprotein E (ApoE) in regulating cholesterol metabolism by macrophages during S. aureus osteomyelitis. Results: The data from GSE166522 showed that cholesterol metabolism disorder was induced by S. aureus osteomyelitis. Loss of cholesterol from macrophage obtained from mice with S. aureus osteomyelitis was detected by liquid chromatography-tandem mass spectrometry(LC-MS/MS), which is consistent with Filipin III staining results. Changes in intracellular cholesterol content influenced bactericidal capacity of macrophage. Subsequently, it was proven by gene set enrichment analysis and qPCR, that ApoE played a key role in developing cholesterol metabolism disorder in S. aureus osteomyelitis. ApoE deficiency in macrophages resulted in increased resistance to S. aureus. ApoE-deficient mice manifested abated bone destruction and decreased bacteria load. Moreover, the combination of transcriptional analysis, qPCR, and killing assay showed that ApoE deficiency led to enhanced cholesterol biosynthesis in macrophage, ameliorating anti-infection ability. Conclusion: We identified a previously unrecognized role of ApoE in S. aureus osteomyelitis from the perspective of metabolic reprogramming. Hence, during treating S. aureus osteomyelitis, considering cholesterol metabolism as a potential therapeutic target presents a new research direction.


Subject(s)
Osteomyelitis , Staphylococcal Infections , Mice , Animals , Staphylococcus aureus , Chromatography, Liquid , Tandem Mass Spectrometry , Macrophages/metabolism , Cholesterol/metabolism , Osteomyelitis/microbiology , Staphylococcal Infections/microbiology , Apolipoproteins E/genetics
6.
Biomark Res ; 11(1): 3, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36611218

ABSTRACT

BACKGROUND: Osteosarcoma (OSA) is the most prevalent type of bone cancer with a high rate of metastasis. Circular RNAs (CircRNAs) play an essential role in multiple aspects of tumour biology. This study aimed to elucidate the role of circEMB in OSA. METHODS: circRNAs related to OSA invasion were identified via RNA sequencing and qRT-PCR. The relationship between circEMB levels and clinicopathological features of OSA was examined using the clinical specimens and data of 53 patients with OSA. Several in vivo and in vitro experiments, including intravital imaging, whole-transcriptome sequencing, transwell assay, flow cytometry, dual-luciferase reporter assay, RIP assay, RNA pull-down assay and RNA-FISH, were performed to examine the effects of circEMB on the malignant behaviour of OSA. RESULTS: A novel circRNA, named circEMB (hsa_circ_001310), was identified in this study. circEMB can promote the malignant behaviour of OSA. In vitro experiments revealed that circEMB knockdown decreased cell proliferation, inhibited tumour invasion and metastasis; increased apoptosis and resulted in G1/S phase arrest. In vivo experiments revealed that circEMB knockdown inhibited tumour growth and metastasis in xenograft-bearing mice. Mechanistically, circEMB affects the malignant behaviour of OSA by mediating EGFR as an miR-3184-5p sponge. In addition, the circEMB/miR-3184-5p/EGFR axis modulates methotrexate (MTX) resistance in OSA. CONCLUSIONS: CircEMB plays a critical role in promoting cancer via the miR-3184-5p/EGFR pathway, indicating that circEMB may serve as a therapeutic target for OSA.

7.
Journal of Preventive Medicine ; (12): 522-525, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-976234

ABSTRACT

Objective@#To analyze the factors affecting the dropping-out from methadone maintenance treatment (MMT) in Hangzhou City, so as to provide the evidence for improving the compliance to MMT.@*Methods@#One MMT clinic was sampled from each of the eight districts in Hangzhou City using a cluster random sampling method, and patients that received MMT and were at ages of 18 years and older and registered during the period from December 2020 through June 2021 were recruited. Participants' basic characteristics, illegality and crime within 6 months prior to MMT and family and social relationships were collected through questionnaire surveys, and factors affecting the dropping-out from MMT were identified using a multivariable logistic regression model. @*Results@#A total of 315 outpatients were included from MMT clinics. The participants had a mean age of (45.33±7.63) years, and included 245 men (77.78%) and 70 women (22.22%), with a dropping-out rate of 65.71%. Multivariable logistic regression analysis showed a low likelihood of dropping-out from MMT among patients at ages of 60 years and older (OR=0.080, 95%CI: 0.018-0.350), employees (OR=0.415, 95%CI: 0.236-0.727), patients without drug-related infectious diseases (OR=0.411, 95%CI: 0.231-0.731), patients with per dossing of 60 mL and higher (OR=0.431, 95%CI: 0.236-0.787) and patients without contact with drug-using friends (OR=0.328, 95%CI: 0.185-0.582), and a high possibility of dropping-out from MMT among patients with poor relationship with family members (OR=2.905, 95%CI: 1.127-7.488). @*Conclusion@#Age, working status, drug-related infectious diseases, dosing, relationship with family members and contact with drug-using friends affected the dropping-out from MTT in Hangzhou City.

8.
J Immunol Res ; 2022: 6568278, 2022.
Article in English | MEDLINE | ID: mdl-36065454

ABSTRACT

The osteosarcoma (OS) microenvironment is composed of tumor cells, immune cells, and stromal tissue and is emerging as a pivotal player in OS development and progression. Thus, microenvironment-targeted strategies are urgently needed to improve OS treatment outcomes. Using principal component analysis (PCA), we systematically examined the tumor microenvironment (TME) and immune cell infiltration of 88 OS cases and constructed a TME scoring system based on the TMEscore high and TMEscore low phenotypes. Our analysis revealed that TMEscore high correlates with longer survival in OS patients, elevated immune cell infiltration, increased immune checkpoints, and increased sensitivity to chemotherapy. TMEscore low strongly correlated with immune exclusion. These observations were externally validated using a GEO dataset (GSE21257) from 53 OS patients. Our laboratory data also proved our findings. This finding enhances our understanding of the immunological landscape in OS and may uncover novel targeted therapeutic strategies.


Subject(s)
Bone Neoplasms , Osteosarcoma , Bone Neoplasms/genetics , Bone Neoplasms/therapy , Humans , Immunologic Factors , Immunotherapy , Osteosarcoma/genetics , Osteosarcoma/therapy , Prognosis , Tumor Microenvironment/genetics
9.
Molecules ; 27(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36014451

ABSTRACT

The abuse of buprenorphine and methadone has grown into a rising worldwide issue. After their consumption, buprenorphine, methadone and their metabolites can be found in the human organism. Due to the difficulty in the assessment of these compounds by routine drug screening, the importance of developing highly sensitive analytical approaches is undeniable. Liquid chromatography tandem mass spectrometry is the preferable technique for the determination of buprenorphine, methadone and their metabolites in biological matrices including urine, plasma, nails or oral fluids. This research aims to review a critical discussion of the latest trends for the monitoring of buprenorphine, methadone and their metabolites in various biological specimens.


Subject(s)
Buprenorphine , Methadone , Chromatography, Liquid/methods , Humans , Methadone/urine , Tandem Mass Spectrometry/methods
10.
Bioengineered ; 13(5): 12309-12325, 2022 05.
Article in English | MEDLINE | ID: mdl-35593122

ABSTRACT

Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. Accumulating evidence has revealed that microRNAs (miRNAs) play a crucial role in the progression of OS. In this study, we found that miR-744-5p was the least expressed miRNA in patients with OS by analyzing GSE65071 from the GENE EXPRESSION OMNIBUS (GEO) database. Through real-time quantitative PCR (qRT-PCR), western blotting, colony formation assay, 5-Ethynyl-2-Deoxyuridine (EdU) incorporation assay, transwell migration, and invasion assays, we demonstrated its ability to inhibit the proliferation, migration, and invasion of OS cells in vitro. According to the luciferase reporter assay, transforming growth factor-ß1 (TGFB1) was negatively regulated by miR-744-5p and reversed the effects of miR-744-5p on OS. Subcutaneous tumor-forming animal models and tail vein injection lung metastatic models were used in animal experiments, and it was found that miR-744-5p negatively regulated tumor growth and metastasis in vivo. Furthermore, rescue assays verified that miR-744-5p regulates TGFB1 expression in OS. Further experiments revealed that the p38 MAPK signaling pathway is involved in the miR-744-5p/TGFB1 axis. Generally, this study suggests that miR-744-5p is a negative regulator of TGFB1 and suppresses OS progression and metastasis via the p38 MAPK signaling pathway.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Adolescent , Animals , Bone Neoplasms/metabolism , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Osteosarcoma/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factors , p38 Mitogen-Activated Protein Kinases/genetics
11.
Prep Biochem Biotechnol ; 51(10): 953-960, 2021.
Article in English | MEDLINE | ID: mdl-34365899

ABSTRACT

Methadone (MTD) is a synthetic analgesic drug used for treating opioid dependence and effectively used clinically for patients with severe pain. The abuse of MTD may lead to poisoning, disorder in the central nervous system and even death. The regular monitoring of MTD in biological matrices including serum, plasma and urine samples is an effective way to control abuse of MTD. In this manner, the selection of analytical monitoring of MTD in biological matrices is of paramount importance. This study was conducted to review high-performance liquid chromatography (HPLC) techniques carried out on MTD and its main metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) in the biological samples during 2015-June 2021.


Subject(s)
Chromatography, High Pressure Liquid/methods , Methadone/blood , Methadone/urine , Narcotics/blood , Narcotics/urine , Drug Monitoring/methods , Hair/chemistry , Humans , Methadone/analysis , Methadone/metabolism , Nails/chemistry , Narcotics/analysis , Narcotics/metabolism , Substance Abuse Detection/methods
12.
J Exp Clin Cancer Res ; 40(1): 235, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34271943

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are involved in diverse processes that drive cancer development. However, the expression landscape and mechanistic function of circRNAs in osteosarcoma (OS) remain to be studied. METHODS: Bioinformatic analysis and high-throughput RNA sequencing tools were employed to identify differentially expressed circRNAs between OS and adjacent noncancerous tissues. The expression level of circ_001422 in clinical specimens and cell lines was measured using qRT-PCR. The association of circ_001422 expression with the clinicopathologic features of 55 recruited patients with OS was analyzed. Loss- and gain-of-function experiments were conducted to explore the role of circ_001422 in OS cells. RNA immunoprecipitation, fluorescence in situ hybridization, bioinformatics database analysis, RNA pulldown assays, dual-luciferase reporter assays, mRNA sequencing, and rescue experiments were conducted to decipher the competitive endogenous RNA regulatory network controlled by circ_001422. RESULTS: We characterized a novel and abundant circRNA, circ_001422, that promoted OS progression. Circ_001422 expression was dramatically increased in OS cell lines and tissues compared with noncancerous samples. Higher circ_001422 expression correlated with more advanced clinical stage, larger tumor size, higher incidence of distant metastases and poorer overall survival in OS patients. Circ_001422 knockdown markedly repressed the proliferation and metastasis and promoted the apoptosis of OS cells in vivo and in vitro, whereas circ_001422 overexpression exerted the opposite effects. Mechanistically, competitive interactions between circ_001422 and miR-195-5p elevated FGF2 expression while also initiating PI3K/Akt signaling. These events enhanced the malignant characteristics of OS cells. CONCLUSIONS: Circ_001422 accelerates OS tumorigenesis and metastasis by modulating the miR-195-5p/FGF2/PI3K/Akt axis, implying that circ_001422 can be therapeutically targeted to treat OS.


Subject(s)
MicroRNAs/metabolism , Osteosarcoma/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Circular/genetics , Disease Progression , Female , Humans , Male , Neoplasm Metastasis , Osteosarcoma/pathology
13.
Cell Death Dis ; 12(4): 408, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859186

ABSTRACT

One of the malignant transformation hallmarks is metabolism reprogramming, which plays a critical role in the biosynthetic needs of unchecked proliferation, abrogating cell death programs, and immunologic escape. However, the mechanism of the metabolic switch is not fully understood. Here, we found that the S-nitrosoproteomic profile of endogenous nitrogen oxide in ovarian cancer cells targeted multiple components in metabolism processes. Phosphofructokinase (PFKM), one of the most important regulatory enzymes of glycolysis, was S-nitrosylated by nitric oxide synthase NOS1 at Cys351. S-nitrosylation at Cys351 stabilized the tetramer of PFKM, leading to resist negative feedback of downstream metabolic intermediates. The PFKM-C351S mutation decreased the proliferation rate of cultured cancer cells, and reduced tumor growth and metastasis in the mouse xenograft model. These findings indicated that S-nitrosylation at Cys351 of PFKM by NOS1 contributes to the metabolic reprogramming of ovarian cancer cells, highlighting a critical role of endogenous nitrogen oxide on metabolism regulations in tumor progression.


Subject(s)
Carcinoma, Ovarian Epithelial/genetics , Glycolysis/genetics , Phosphofructokinase-1, Muscle Type/metabolism , Animals , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Mice
14.
Neural Regen Res ; 16(10): 1935-1943, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33642363

ABSTRACT

Deficits in intrinsic neuronal capacities in the spinal cord, a lack of growth support, and suppression of axonal outgrowth by inhibitory molecules mean that spinal cord injury almost always has devastating consequences. As such, one of the primary targets for the treatment of spinal cord injury is to develop strategies to antagonize extrinsic or intrinsic axonal growth-inhibitory factors or enhance the factors that support axonal growth. Among these factors, a series of individual protein level disorders have been identified during the generation of axons following spinal cord injury. Moreover, an increasing number of studies have indicated that post-translational modifications of these proteins have important implications for axonal growth. Some researchers have discovered a variety of post-translational modifications after spinal cord injury, such as tyrosination, acetylation, and phosphorylation. In this review, we reviewed the post-translational modifications for axonal growth, functional recovery, and neuropathic pain after spinal cord injury, a better understanding of which may elucidate the dynamic change of spinal cord injury-related molecules and facilitate the development of a new therapeutic strategy for spinal cord injury.

15.
J Oncol ; 2021: 6646459, 2021.
Article in English | MEDLINE | ID: mdl-33564309

ABSTRACT

Osteosarcoma (OS) often occurs in children and often undergoes metastasis, resulting in lower survival rates. Information on the complexity and pathogenic mechanism of OS is limited, and thus, the development of treatments involving alternative molecular and genetic targets is hampered. We categorized transcriptome data into metastasis and nonmetastasis groups, and 400 differential RNAs (230 messenger RNAs (mRNAs) and 170 long noncoding RNAs (lncRNAs)) were obtained by the edgeR package. Prognostic genes were identified by performing univariate Cox regression analysis and the Kaplan-Meier (KM) survival analysis. We then examined the correlation between the expression level of prognostic lncRNAs and mRNAs. Furthermore, microRNAs (miRNAs) corresponding to the coexpression of lncRNA-mRNA was predicted, which was used to construct a competitive endogenous RNA (ceRNA) regulatory network. Finally, multivariate Cox proportional risk regression analysis was used to identify hub prognostic genes. Three hub prognostic genes (ABCG8, LOXL4, and PDE1B) were identified as potential prognostic biomarkers and therapeutic targets for OS. Furthermore, transcriptions factors (TFs) (DBP, ESX1, FOS, FOXI1, MEF2C, NFE2, and OTX2) and lncRNAs (RP11-357H14.16, RP11-284N8.3, and RP11-629G13.1) that were able to affect the expression levels of genes before and after transcription were found to regulate the prognostic hub genes. In addition, we identified drugs related to the prognostic hub genes, which may have potential clinical applications. Immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR) confirmed that the expression levels of ABCG8, LOXL4, and PDE1B coincided with the results of bioinformatics analysis. Moreover, the relationship between the hub prognostic gene expression and patient prognosis was also validated. Our study elucidated the roles of three novel prognostic biomarkers in the pathogenesis of OS as well as presenting a potential clinical treatment for OS.

16.
Oncol Lett ; 21(3): 180, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33574919

ABSTRACT

Osteosarcoma is the most common primary malignancy of the bones, and is associated with a high rate of metastasis and a poor prognosis. A tight association between the tumor microenvironment (TME) and osteosarcoma metastasis has been established. In the present study, the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm was applied to calculate the immune and stromal scores of patients with osteosarcoma based on data from The Cancer Genome Atlas database. A metagene approach and deconvolution method were used to reveal distinct TME landscapes in patients with osteosarcoma. Bioinformatics analysis was used to identify differentially expressed genes (DEGs) associated with metastasis and immune infiltration in osteosarcoma, and a risk model was constructed using the DEGs with potential prognostic significance. Subsequently, gene set enrichment and Spearman's correlation analyses were used to delineate the biological processes associated with these prognostic biomarkers. Finally, immunohistochemical (IHC) analysis was performed to evaluate the expression levels of immune infiltrates and prognostic biomarkers in clinical osteosarcoma tissues. The results of the ESTIMATE demonstrated that patients with non-metastatic osteosarcoma presented with higher immune/stromal scores and a more favorable prognosis compared with those with metastatic osteosarcoma. The TME landscapes in patients with osteosarcoma suggested that high levels of tumor-infiltrating immune cells (TIICs) may suppress metastasis. Increased numbers of CD56bright natural killer cells, immature B cells, M1 macrophages and neutrophils, and lower levels of M2 macrophages were observed in the non-metastatic tissues compared with those in the metastatic tissues. A total of 69 DEGs were identified to be associated with metastasis and immune infiltration in osteosarcoma. Of these, GATA3, LPAR5, EVI2B, RIAM and CFH exhibited prognostic potential and were highly expressed in non-metastatic osteosarcoma tissues based on the IHC analysis results. These biomarkers were involved in various immune-related biological processes and were positively associated with multiple TIICs and immune signatures. The risk model constructed using these prognostic biomarkers demonstrated high predictive accuracy for the prognosis of osteosarcoma. In conclusion, the present study proposed a five-biomarker prognostic signature for the prediction of metastasis and immune infiltration in patients with osteosarcoma.

17.
Oncol Lett ; 20(1): 99-112, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32565938

ABSTRACT

Osteosarcoma (OS) is the most common and destructive primary bone malignancy to affect children and adolescents. Metastases remain the primary cause of death in patients with OS. In the present study, weight gene co-expressed network analysis (WGCNA) and differentially-expressed gene analysis were used to identify key genes associated with the metastasis of OS. Reverse transcription-quantitative PCR and immunohistochemical staining were then used to detect the expression levels of these key genes in OS tissues, and to determine the hub genes of interest. Wound-healing and transwell assays, in addition to a lung metastasis model, were used to detect the effects of the hub genes on OS cell proliferation and metastasis in vitro and in vivo. Using WGCNA and differential expression analysis, deleted in lung and esophageal cancer protein 1 (DLEC1), Forkhead box J1 (FOXJ1) and mitogen-activated protein kinase 15 (MAPK15) were predicted to be key metastasis-associated genes, and highly expressed in metastatic OS tissues; among them, the protein and mRNA expression levels of MAPK15 were most significantly increased in our OS tissues from patients who exhibited metastases at diagnosis, and thus MAPK15 was determined to be a metastasis-associated hub gene to further study. Furthermore, inhibiting MAPK15 expression significantly decreased OS cell metastasis in vitro and in vivo, as well as suppressing c-Jun/matrix metalloproteinase (MMP)-associated pathways. Overexpression of MAPK15 activated the c-Jun/MMPs pathway and promoted OS cell metastasis, while inhibition of c-Jun blocked this effect. Taken together, MAPK15 was indicated to be an OS metastasis-associated gene, and was confirmed to promote the migration and invasion of OS cells via the c-Jun/MMP pathway. MAPK15 may therefore be an effective target for the treatment of OS.

18.
Oncol Lett ; 19(1): 177-186, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31897128

ABSTRACT

A number of studies have revealed that there is an increasing incidence of early-onset colorectal cancer (CRC) in young adults (before the age of 50 years) and a progressive decline in CRC among older patients, after the age of 50 years (late-onset CRC). However, the etiology of early-onset CRC is not fully understood. The aim of the present study was to identify key genes associated with the development of early-onset CRC through weighted gene co-expression network analysis (WGCNA). The GSE39582 dataset was downloaded from the Gene Expression Omnibus database, and the data profiles of tissues from patients diagnosed before the age of 50 years were selected. The top 10,000 genes with the highest variability were used to construct the WGCNA. Hub genes were identified from the modules associated with clinical traits using gene significance >0.2 and module membership >0.8 as the cut-off criteria. Gene Ontology and pathway analyses were subsequently performed on the hub genes and a protein-protein interaction network (PPI) was constructed. The diagnostic value of module hub genes with a degree score >5 in the PPI network was verified in samples from patients with CRC diagnosed before the age of 50 years obtained from The Cancer Genome Atlas. Eight co-expressed gene modules were identified in the WGCNA and two modules (blue and turquoise) were associated with the tumor-node-metastasis stage. A total of 140 module hub genes were identified and found to be enriched in 'mitochondrial large ribosomal subunit', 'structural constituent of ribosome', 'poly (A) RNA binding', 'collagen binding', 'protein ubiquitination' and 'ribosome pathway'. Twenty-six module hub genes were found to have a degree score >5 in the PPI network, seven of which [secreted protein acidic and cysteine rich (SPARC), decorin (DCN), fibrillin 1 (FBN1), WW domain containing transcription regulator 1 (WWTR1), transgelin (TAGLN), DEAD-box helicase 28 (DDX28) and cold shock domain containing C2 (CSDC2)], had good prognostic values for patients with early-onset CRC, but not late-onset CRC. Therefore, SPARC, DCN, FBN1, WWTR1, TAGLN, DDX28 and CSDC2 may contribute to the development of early-onset CRC and may serve as potential diagnostic biomarkers.

19.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(8): 883-890, 2019 Aug 30.
Article in Chinese | MEDLINE | ID: mdl-31511206

ABSTRACT

OBJECTIVE: To investigate the effect of the chemoprotectant tempol on the anti-tumor activity of cisplatin (DDP). METHODS: The cellular toxicity of tempol in human colon cancer SW480 cells and mouse colon cancer CT26 cells were evaluated using MTT and cell counting kit-8 assays. CalcuSyn software analysis was used to determine the interaction between tempol and DDP in inhibition of the cell viability. A subcutaneous homograft mouse model of colon cancer was established. The mice were randomly divided into control group, tempol group, cisplatin group and tempol + DDP treatment group with intraperitoneal injections of the indicated agents. The tumor size, body weight and lifespan of the mice were measured, and HE staining was used to analyze the cytotoxic effect of the agents on the kidney and liver. Immunohistochemistry and Western blotting were performed to detect the expression of Bax and Bcl2 in the tumor tissue, and TUNEL staining was used to analyze the tumor cell apoptosis. The level of reactive oxygen species (ROS) in the tumor tissue was determined using flow cytometry. RESULTS: Tempol showed inhibitory effects on the viability of SW480 and CT26 cells. CalcuSyn software analysis showed that tempol had a synergistic anti-tumor effect with DDP (CI < 1). In the homograft mouse model, tempol treatment alone did not produce obvious anti-tumor effect. HE staining showed that the combined use of tempol and DDP alleviated DDP-induced fibrogenesis in the kidneys, but tempol also reduced the anti-tumor activity of DDP. Compared with the mice treated with DDP alone, the mice treated with both tempol and DDP had a significantly larger tumor size (P < 0.01) and a shorter lifespan (P < 0.05). Tempol significantly reversed DDP-induced expression of Bax and Bcl2 in the tumor tissue and tumor cell apoptosis (P < 0.001), and obviously reduced the elevation of ROS level in the tumor tissue induced by DDP treatment (P < 0.05). CONCLUSIONS: Tempol can attenuate the anti-tumor effect of DDP while reducing the side effects of DDP. Caution must be taken and the risks and benefits should be carefully weighed when considering the use of tempol as an anti-oxidant to reduce the toxicities of DDP.


Subject(s)
Cyclic N-Oxides/pharmacology , Animals , Antineoplastic Agents , Antioxidants , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cisplatin , Drug Resistance, Neoplasm , Humans , Mice , Spin Labels
20.
Protein Sci ; 27(6): 1102-1108, 2018 06.
Article in English | MEDLINE | ID: mdl-29607555

ABSTRACT

Centrin is a member of the EF-hand superfamily of calcium-binding proteins, a highly conserved eukaryotic protein that binds to Ca2+ . Its self-assembly plays a causative role in the fiber contraction that is associated with the cell division cycle and ciliogenesis. In this study, the crystal structure of N-terminal domain of ciliate Euplotes octocarinatus centrin (N-EoCen) was determined by using the selenomethionine single-wavelength anomalous dispersion method. The protein molecules formed homotrimers. Every protomer had two putative Ca2+ ion-binding sites I and II, protomer A, and C bound one Ca2+ ion, while protomer B bound two Ca2+ ions. A novel binding site III was observed and the Ca2+ ion was located at the center of the homotrimer. Several hydrogen bonds, electrostatic, and hydrophobic interactions between the protomers contributed to the formation of the oligomer. Structural studies provided insight into the foundation for centrin aggregation and the roles of calcium ions.


Subject(s)
Calcium/metabolism , Euplotes/chemistry , Trimethoprim, Sulfamethoxazole Drug Combination/chemistry , Trimethoprim, Sulfamethoxazole Drug Combination/metabolism , Binding Sites , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Protein Multimerization , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...