Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Adv Sci (Weinh) ; : e2402429, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751149

ABSTRACT

Axially chiral thioethers and sulfoxides emerge as two pivotal classes of ligands and organocatalysts, which have remarkable features in the stereoinduction of various asymmetric transformations. However, the lack of easy methods to access such molecules with diverse structures has hampered their broader utilization. Herein, an oxidative kinetic resolution for sulfides using a chiral bifunctional squaramide as the catalyst with cumene hydroperoxide as the terminal oxidant is established. This asymmetric approach provides a variety of axially chiral thioethers as well as sulfoxides bearing both axial and central chirality, with excellent diastereo- and enantioselectivities. This catalytic system also successfully extends to the kinetic resolution of benzothiophene-based sulfides. Preliminary mechanism investigation indicates that the multiple hydrogen bonding interactions between the bifunctional squaramide catalyst and substrates play a crucial role in determining the enantioselectivity and reactivity.

2.
bioRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38501121

ABSTRACT

Glioblastoma (GBM) poses a significant challenge in clinical oncology due to its aggressive nature, heterogeneity, and resistance to therapies. Cancer stem cells (CSCs) play a critical role in GBM, particularly in treatment-resistance and tumor relapse, emphasizing the need to comprehend the mechanisms regulating these cells. Also, their multifaceted contributions to the tumor-microenvironment (TME) underline their significance, driven by their unique properties. This study aimed to characterize glioblastoma stem cells (GSCs), specifically slow-cycling cells (SCCs), in an immunocompetent murine GBM model to explore their similarities with their human counterparts. Using the KR158 mouse model, we confirmed that SCCs isolated from this model exhibited key traits and functional properties akin to human SCCs. KR158 murine SCCs, expanded in the gliomasphere assay, demonstrated sphere forming ability, self-renewing capacity, positive tumorigenicity, enhanced stemness and resistance to chemotherapy. Together, our findings validate the KR158 murine model as a framework to investigate GSCs and SCCs in GBM-pathology, and explore specifically the SCC-immune system communications, understand their role in disease progression, and evaluate the effect of therapeutic strategies targeting these specific connections.

3.
Lancet ; 403(10429): 813-823, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38387470

ABSTRACT

BACKGROUND: Hepatitis E virus (HEV) is a frequently overlooked causative agent of acute hepatitis. Evaluating the long-term durability of hepatitis E vaccine efficacy holds crucial importance. METHODS: This study was an extension to a randomised, double-blind, placebo-controlled, phase-3 clinical trial of the hepatitis E vaccine conducted in Dontai County, Jiangsu, China. Participants were recruited from 11 townships in Dongtai County. In the initial trial, a total of 112 604 healthy adults aged 16-65 years were enrolled, stratified according to age and sex, and randomly assigned in a 1:1 ratio to receive three doses of hepatitis E vaccine or placebo intramuscularly at month 0, month 1, and month 6. A sensitive hepatitis E surveillance system including 205 clinical sentinels, covering the entire study region, was established and maintained for 10 years after vaccination. The primary outcome was the per-protocol efficacy of hepatitis E virus vaccine to prevent confirmed hepatitis E occurring at least 30 days after administration of the third dose. Throughout the study, the participants, site investigators, and laboratory staff remained blinded to the treatment assignments. This study is registered with ClinicalTrials.gov (NCT01014845). FINDINGS: During the 10-year study period from Aug 22, 2007, to Oct 31, 2017, 90 people with hepatitis E were identified; 13 in the vaccine group (0·2 per 10 000 person-years) and 77 in the placebo group (1·4 per 10 000 person-years), corresponding to a vaccine efficacy of 83·1% (95% CI 69·4-91·4) in the modified intention-to-treat analysis and 86·6% (73·0 to 94·1) in the per-protocol analysis. In the subsets of participants assessed for immunogenicity persistence, of those who were seronegative at baseline and received three doses of hepatitis E vaccine, 254 (87·3%) of 291 vaccinees in Qindong at the 8·5-year mark and 1270 (73·0%) of 1740 vaccinees in Anfeng at the 7·5-year mark maintained detectable concentrations of antibodies. INTERPRETATION: Immunisation with this hepatitis E vaccine offers durable protection against hepatitis E for up to 10 years, with vaccine-induced antibodies against HEV persisting for at least 8·5 years. FUNDING: National Natural Science Foundation of China, Fujian Provincial Natural Science Foundation, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and the Fundamental Research Funds for the Central Universities.


Subject(s)
Hepatitis E , Viral Hepatitis Vaccines , Adult , Humans , Antibodies, Viral , Hepatitis E/prevention & control , Vaccination
4.
Mol Ther Methods Clin Dev ; 32(1): 101192, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38327807

ABSTRACT

The COVID-19 pandemic has caused about seven million deaths worldwide. Preventative vaccines have been developed including Spike gp mRNA-based vaccines that provide protection to immunocompetent patients. However, patients with primary immunodeficiencies, patients with cancer, or hematopoietic stem cell transplant recipients are not able to mount robust immune responses against current vaccine approaches. We propose to target structural SARS-CoV-2 antigens (i.e., Spike gp, Membrane, Nucleocapsid, and Envelope) using circulating human antigen-presenting cells electroporated with full length SARS-CoV-2 structural protein-encoding mRNAs to activate and expand specific T cells. Based on the Th1-type cytokine and cytolytic enzyme secretion upon antigen rechallenge, we were able to generate SARS-CoV-2 specific T cells in up to 70% of unexposed unvaccinated healthy donors (HDs) after 3 subsequent stimulations and in 100% of recovered patients (RPs) after 2 stimulations. By means of SARS-CoV-2 specific TCRß repertoire analysis, T cells specific to Spike gp-derived hypomutated regions were identified in HDs and RPs despite viral genomic evolution. Hence, we demonstrated that SARS-CoV-2 mRNA-loaded antigen-presenting cells are effective activating and expanding COVID19-specific T cells. This approach represents an alternative to patients who are not able to mount adaptive immune responses to current COVID-19 vaccines with potential protection across new variants that have conserved genetic regions.

5.
Cancers (Basel) ; 16(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38254768

ABSTRACT

We greatly appreciate the interest, careful reading, and appraisal by Mahajan and Schmidt [...].

6.
Genome Med ; 16(1): 17, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38268001

ABSTRACT

BACKGROUND: Despite advancements in the successful use of immunotherapy in treating a variety of solid tumors, applications in treating brain tumors have lagged considerably. This is due, at least in part, to the lack of well-characterized antigens expressed within brain tumors that can mediate tumor rejection; the low mutational burden of these tumors that limits the abundance of targetable neoantigens; and the immunologically "cold" tumor microenvironment that hampers the generation of sustained and productive immunologic responses. The field of mRNA-based therapeutics has experienced a boon following the universal approval of COVID-19 mRNA vaccines. mRNA-based immunotherapeutics have also garnered widespread interest for their potential to revolutionize cancer treatment. In this study, we developed a novel and scalable approach for the production of personalized mRNA-based therapeutics that target multiple tumor rejection antigens in a single therapy for the treatment of refractory brain tumors. METHODS: Tumor-specific neoantigens and aberrantly overexpressed tumor-associated antigens were identified for glioblastoma and medulloblastoma tumors using our cancer immunogenomics pipeline called Open Reading Frame Antigen Network (O.R.A.N). Personalized tumor antigen-specific mRNA vaccine was developed for each individual tumor model using selective gene capture and enrichment strategy. The immunogenicity and efficacy of the personalized mRNA vaccines was evaluated in combination with anti-PD-1 immune checkpoint blockade therapy or adoptive cellular therapy with ex vivo expanded tumor antigen-specific lymphocytes in highly aggressive murine GBM models. RESULTS: Our results demonstrate the effectiveness of the antigen-specific mRNA vaccines in eliciting robust anti-tumor immune responses in GBM hosts. Our findings substantiate an increase in tumor-infiltrating lymphocytes characterized by enhanced effector function, both intratumorally and systemically, after antigen-specific mRNA-directed immunotherapy, resulting in a favorable shift in the tumor microenvironment from immunologically cold to hot. Capacity to generate personalized mRNA vaccines targeting human GBM antigens was also demonstrated. CONCLUSIONS: We have established a personalized and customizable mRNA-therapeutic approach that effectively targets a plurality of tumor antigens and demonstrated potent anti-tumor response in preclinical brain tumor models. This platform mRNA technology uniquely addresses the challenge of tumor heterogeneity and low antigen burden, two key deficiencies in targeting the classically immunotherapy-resistant CNS malignancies, and possibly other cold tumor types.


Subject(s)
Brain Neoplasms , Cancer Vaccines , Cerebellar Neoplasms , Medulloblastoma , Humans , Animals , Mice , mRNA Vaccines , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Cancer Vaccines/genetics , Antigens, Neoplasm/genetics , Tumor Microenvironment/genetics
7.
Nucleic Acids Res ; 52(D1): D1193-D1200, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37897359

ABSTRACT

circRNADisease v2.0 is an enhanced and reliable database that offers experimentally verified relationships between circular RNAs (circRNAs) and various diseases. It is accessible at http://cgga.org.cn/circRNADisease/ or http://cgga.org.cn:9091/circRNADisease/. The database currently includes 6998 circRNA-disease entries across multiple species, representing a remarkable 19.77-fold increase compared to the previous version. This expansion consists of a substantial rise in the number of circRNAs (from 330 to 4246), types of diseases (from 48 to 330) and covered species (from human only to 12 species). Furthermore, a new section has been introduced in the database, which collects information on circRNA-associated factors (genes, proteins and microRNAs), molecular mechanisms (molecular pathways), biological functions (proliferation, migration, invasion, etc.), tumor and/or cell line and/or patient-derived xenograft (PDX) details, and prognostic evidence in diseases. In addition, we identified 7 159 865 relationships between mutations and circRNAs among 30 TCGA cancer types. Due to notable enhancements and extensive data expansions, the circRNADisease 2.0 database has become an invaluable asset for both clinical practice and fundamental research. It enables researchers to develop a more comprehensive understanding of how circRNAs impact complex diseases.


Subject(s)
Databases, Genetic , Neoplasms , RNA, Circular , Humans , Cell Line , Neoplasms/genetics
8.
Res Sq ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014191

ABSTRACT

The promise of immunotherapy to induce long-term durable responses in conventionally treatment resistant tumors like glioblastoma (GBM) has given hope for patients with a dismal prognosis. Yet, few patients have demonstrated a significant survival benefit despite multiple clinical trials designed to invigorate immune recognition and tumor eradication. Insights gathered over the last two decades have revealed numerous mechanisms by which glioma cells resist conventional therapy and evade immunological detection, underscoring the need for strategic combinatorial treatments as necessary to achieve appreciable therapeutic effects. However, new combination therapies are inherently difficult to develop as a result of dose-limiting toxicities, the constraints of the blood-brain barrier, and the suppressive nature of the GBM tumor microenvironment (TME). GBM is notoriously devoid of lymphocytes driven in part by a paucity of lymphocyte trafficking factors necessary to prompt their recruitment, infiltration, and activation. We have developed a novel recombinant adeno-associated virus (AAV) gene therapy strategy that enables focal and stable reconstitution of the GBM TME with C-X-C motif ligand 9 (CXCL9), a powerful call-and-receive chemokine for cytotoxic T lymphocytes (CTLs). By precisely manipulating local chemokine directional guidance, AAV-CXCL9 increases tumor infiltration by CD8-postive cytotoxic lymphocytes, sensitizing GBM to anti-PD-1 immune checkpoint blockade (ICB). These effects are accompanied by immunologic signatures evocative of an inflamed and responsive TME. These findings support targeted AAV gene therapy as a promising adjuvant strategy for reconditioning GBM immunogenicity given its excellent safety profile, TME-tropism, modularity, and off-the-shelf capability, where focal delivery bypasses the constrains of the blood-brain barrier, further mitigating risks observed with high-dose systemic therapy.

9.
Sci Bull (Beijing) ; 68(20): 2448-2455, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37743201

ABSTRACT

The Escherichia coli-produced human papillomavirus (HPV) 16/18 bivalent vaccine (Cecolin) has received prequalification by the World Health Organization based on its high efficacy and good safety profile. We aimed to evaluate the immunogenicity and safety of the second-generation nonavalent HPV 6/11/16/18/31/33/45/52/58 vaccine (Cecolin 9) through the randomized, blinded phase 2 clinical trial. Eligible healthy women aged 18-45 years were randomly (1:1) allocated to receive three doses of 1.0 mL (270 µg) of Cecolin 9 or placebo with a 0-1-6-month schedule. The primary endpoint was the seroconversion rate and geometric mean titer of neutralizing antibodies (nAbs) one month after the full vaccination course (month 7). The secondary endpoint was the safety profile including solicited adverse reactions occurring within 7 d, adverse events (AEs) occurring within 30 d after each dose, and serious adverse events (SAEs) occurring during the 7-month follow-up period. In total, 627 volunteers were enrolled and randomly assigned to Cecolin 9 (n = 313) or placebo (n = 314) group in Jiangsu Province, China. Almost all participants in the per-protocol set for immunogenicity (PPS-I) seroconverted for nAbs against all the nine HPV types at month 7, while two failed to seroconvert for HPV 11 and one did not seroconvert for HPV 52. The incidence rates of total AEs in the Cecolin 9 and placebo groups were 80.8% and 72.9%, respectively, with the majority of them being mild and recovering shortly. None of the SAEs were considered related to vaccination. In conclusion, the E. coli-produced 9-valent HPV (9vHPV) vaccine candidate was well tolerated and immunogenic, which warrants further efficacy studies in larger populations.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Vaccines, Virus-Like Particle , Female , Humans , Antibodies, Neutralizing , Escherichia coli , Human Papillomavirus Viruses , Papillomaviridae , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/adverse effects , Vaccines, Combined , Vaccines, Virus-Like Particle/adverse effects , Double-Blind Method
10.
BMC Cancer ; 23(1): 551, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37322408

ABSTRACT

Polymerase I and transcript release factor (PTRF) plays a role in the regulation of gene expression and the release of RNA transcripts during transcription, which have been associated with various human diseases. However, the role of PTRF in glioma remains unclear. In this study, RNA sequencing (RNA-seq) data (n = 1022 cases) and whole-exome sequencing (WES) data (n = 286 cases) were used to characterize the PTRF expression features. Gene ontology (GO) functional enrichment analysis was used to assess the biological implication of changes in PTRF expression. As a result, the expression of PTRF was associated with malignant progression in gliomas. Meanwhile, somatic mutational profiles and copy number variations (CNV) revealed the glioma subtypes classified by PTRF expression showed distinct genomic alteration. Furthermore, GO functional enrichment analysis suggested that PTRF expression was associated with cell migration and angiogenesis, particularly during an immune response. Survival analysis confirmed that a high expression of PTRF is associated with a poor prognosis. In summary, PTRF may be a valuable factor for the diagnosis and treatment target of glioma.


Subject(s)
DNA Copy Number Variations , Glioma , Humans , Cell Line, Tumor , Glioma/genetics , Survival Analysis
11.
Lancet Reg Health West Pac ; 34: 100731, 2023 May.
Article in English | MEDLINE | ID: mdl-37283969

ABSTRACT

Background: A safe and highly efficacious Escherichia coli (E. coli)-produced HPV 16/18 bivalent vaccine has been prequalified by the World Health Organization. Here, we conducted a single-center, open-label, dose-escalation phase 1 clinical trial to evaluate the safety and immunogenicity of the second-generation nonavalent HPV 6/11/16/18/31/33/45/52/58 vaccine. Method: Twenty-four eligible volunteers aged 18-45 years were enrolled in January 2019 in Dongtai, China and received 0.5 mL (135 µg) or 1.0 mL (270 µg) of the candidate vaccine with a 0/1/6-month dose-escalation schedule. Local and systemic adverse events (AEs) occurring within 30 days after each vaccination and serious adverse events (SAEs) occurring within 7 months were recorded. Blood samples from each participant were collected before and 2 days after the first and third vaccinations to determine changes in laboratory parameters. Serum IgG and neutralizing antibody (nAb) levels against each HPV type at month 7 were analyzed (ClinicalTrials.gov: NCT03813940). Findings: The incidences of total AEs in the 135 µg and 270 µg groups were 66.7% and 83.3%, respectively. All AEs were mild or moderate, and no SAEs were reported. No clinically significant changes were found in paired blood indices before or after any of the vaccinations. All the participants in the per-protocol set except for two who failed to seroconvert for HPV 11 or 58 in the 135 µg group seroconverted at month 7 for both IgG and nAbs. Interpretation: The candidate E. coli-produced 9vHPV vaccine has been preliminarily proven to be well tolerated and immunogenic, which encourages further studies in large cohorts with a wider age range. Funding: This study was supported by the National Natural Science Foundation of China, Fujian Provincial Natural Science Foundation, Fujian Province Health and Education Joint Research Program, Xiamen Science and Technology Plan Project, Fundamental Research Funds for the Central Universities, CAMS Innovation Fund for Medical Sciences of China, and Xiamen Innovax Biotechnology Co., Ltd.

12.
Cancers (Basel) ; 15(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37190274

ABSTRACT

BACKGROUND: While immune-cell infiltrated tumors, such as human papillomavirus positive (HPV+) ororpharyngeal squamous cell carcinomas (OPSCC) have been associated with an improved clinical prognosis, there is evidence to suggest that OPSCCs are also subjected to increased immunoregulatory influence. The objective of this study was to assess whether patients with clinically aggressive OPSCC have a distinct immunosuppressive immune signature in the primary tumor. METHODS: This retrospective case-control study analyzed 37 pre-treatment tissue samples from HPV+ and HPV-negative OPSCC patients treated at a single institution. The cases were patients with known disease recurrence and the controls were patients without disease recurrence. An mRNA-expression immune-pathway profiling was performed, and correlated to clinical outcomes. The TCGA head and neck cancer database was utilized to make comparisons with the institutional cohort. RESULTS: In our cohort, HPV-negative and HPV+ patients with known disease recurrence both had significantly increased suppressive monoctyte/macrophage and granulocyte cell-expression-profile enrichment. Similar findings were found in the TCGA cohort when comparing HPV-negative to positive patients. CONCLUSIONS: our study demonstrates that patients with recurrent HPV+ OPSCC had suppressive monocyte/macrophage and granulocyte immune-cell enrichment, similar to those seen in the more aggressive HPV-negative OPSCC.

13.
Bioorg Chem ; 136: 106534, 2023 07.
Article in English | MEDLINE | ID: mdl-37068364

ABSTRACT

Wulfenioidones A - K (1-11) were abietane diterpenoids with highly oxidized 6/6/6 aromatic tricyclic skeleton isolated from the whole plant of Orthosiphon wulfenioides, and their planar structures and absolute configurations were elucidated by spectroscopic data interpretation, electronic circular dichroism calculation as well as X-ray crystallography analysis. Bioactivity screening indicated that compounds 1-4, 6 and 8 exhibited lactate dehydrogenase (LDH) inhibition effect with IC50 values ranging from 0.23 to 3.43 µM by preventing the mononuclear macrophage cell pyroptosis induced by double signal stimulation of LPS and nigericin. Western Blot analyses of Caspase-1 and IL-1ß down-regulation exhibited that compound 1 could selectively inhibit NLRP3 inflammasome, and the cell morphological observation further supported that compound 1 prevented macrophage cell pyroptosis.


Subject(s)
Inflammasomes , Orthosiphon , NLR Family, Pyrin Domain-Containing 3 Protein , Abietanes/pharmacology , Abietanes/chemistry , Macrophages
14.
J Immunother Cancer ; 11(2)2023 02.
Article in English | MEDLINE | ID: mdl-36750252

ABSTRACT

BACKGROUND: Glioma-induced immune dysregulation of the hematopoietic system has been described in a limited number of studies. In this study, our group further demonstrates that gliomas interrupt the cellular differentiation programming and outcomes of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow. HSPCs from glioma-bearing mice are reprogrammed and driven towards expansion of myeloid lineage precursors and myeloid-derived suppressor cells (MDSCs) in secondary lymphoid organs. However, we found this expansion is reversed by immunotherapy. Adoptive cellular therapy (ACT) has been demonstrably efficacious in multiple preclinical models of central nervous system (CNS) malignancies, and here we describe how glioma-induced dysfunction is reversed by this immunotherapeutic platform. METHODS: The impact of orthotopic KR158B-luc glioma on HSPCs was evaluated in an unbiased fashion using single cell RNAseq (scRNAseq) of lineage- cells and phenotypically using flow cytometry. Mature myeloid cell frequencies and function were also evaluated using flow cytometry. Finally, ACT containing total body irradiation, tumor RNA-pulsed dendritic cells, tumor-reactive T cells and HSPCs isolated from glioma-bearing or non-tumor-bearing mice were used to evaluate cell fate differentiation and survival. RESULTS: Using scRNAseq, we observed an altered HSPC landscape in glioma-bearing versus non-tumor-bearing mice . In addition, an expansion of myeloid lineage subsets, including granulocyte macrophage precursors (GMPs) and MDSCs, were observed in glioma-bearing mice relative to non-tumor-bearing controls. Furthermore, MDSCs from glioma-bearing mice demonstrated increased suppressive capacity toward tumor-specific T cells as compared with MDSCs from non-tumor-bearing hosts. Interestingly, treatment with ACT overcame these suppressive properties. When HSPCs from glioma-bearing mice were transferred in the context of ACT, we observed significant survival benefit and long-term cures in orthotopic glioma models compared with mice treated with ACT using non-glioma-bearing HSPCs.


Subject(s)
Central Nervous System Neoplasms , Glioma , Mice , Animals , Cell Line, Tumor , Glioma/pathology , Immunotherapy , Hematopoietic Stem Cells , T-Lymphocytes
15.
Entropy (Basel) ; 25(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36832637

ABSTRACT

Redactable Blockchain aims to ensure the immutability of the data of most applications and provide authorized mutability for some specific applications, such as for removing illegal content from blockchains. However, the existing Redactable Blockchains lack redacting efficiency and protection of the identity information of voters participating in the redacting consensus. To fill this gap, this paper presents an anonymous and efficient redactable blockchain scheme based on Proof-of-Work (PoW) in the permissionless setting, called "AeRChain". Specifically, the paper first presents an improved Back's Linkable Spontaneous Anonymous Group (bLSAG) signatures scheme and uses the improved scheme to hide the identity of blockchain voters. Then, in order to accelerate the achievement of redacting consensus, it introduces a moderate puzzle with variable target values for selecting voters and a voting weight function for assigning different weights to puzzles with different target values. The experimental results show that the present scheme can achieve efficient anonymous redacting consensus with low overhead and reduce communication traffic.

16.
Sci Data ; 9(1): 692, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369198

ABSTRACT

Diffuse gliomas (DGs) are the most common and lethal primary neoplasms in the central nervous system. The latest 2021 World Health Organization (WHO) Classification of Tumors of the Central Nervous System (CNS) was published in 2021, immensely changing the approach to diagnosis and decision making. As a part of the Chinese Glioma Genome Atlas (CGGA) project, our aim was to provide genomic profiling of gliomas in a Chinese cohort. Two hundred eighty six gliomas with different grades were collected over the last decade. Using the Illumina HiSeq platform, over 75.8 million high-quality 150 bp paired-end reads were generated per sample, yielding a total of 43.4 billion reads. We also collected each patient's clinical and pathological information and used it to annotate their genetic data. All patients were diagnosed and classified by neuro-pathologist under the 2021 WHO classification. This dataset provides an important reference for researchers and will significantly advance our understanding of gliomas.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Glioma , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , Cohort Studies , Glioma/genetics , Glioma/pathology , Mutation , World Health Organization
17.
Comput Methods Programs Biomed ; 226: 107100, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36162244

ABSTRACT

BACKGROUND AND OBJECTIVE: Depression is a serious neurological disorder that has become a major health problem worldwide. The detection of mild depression is important for the diagnosis of depression in early stages. This research seeks to find a more accurate fusion model which can be used for mild depression detection using Electroencephalography and eye movement data. METHODS: This study proposes a content-based multiple evidence fusion (CBMEF) method, which fuses EEG and eye movement data at decision level. The method mainly includes two modules, the classification performance matrix module and the dual-weight fusion module. The classification performance matrices of different modalities are estimated by Bayesian rule based on confusion matrix and Mahalanobis distance, and the matrices were used to correct the classification results. Then the relative conflict degree of each modality is calculated, and different weights are assigned to the above modalities at the decision fusion layer according to this conflict degree. RESULTS: The experimental results show that the proposed method outperforms other fusion methods as well as the single modality results. The highest accuracies achieved 91.12%, and sensitivity, specificity and precision were 89.20%, 93.03%, 92.76%. CONCLUSIONS: The promising results showed the potential of the proposed approach for the detection of mild depression. The idea of introducing the classification performance matrix and the dual-weight model to multimodal biosignals fusion casts a new light on the researches of depression recognition.


Subject(s)
Depression , Eye Movements , Depression/diagnosis , Bayes Theorem , Algorithms , Electroencephalography/methods
18.
Lancet Respir Med ; 10(8): 749-760, 2022 08.
Article in English | MEDLINE | ID: mdl-35644168

ABSTRACT

BACKGROUND: All currently available SARS-CoV-2 vaccines are administered by intramuscular injection. We aimed to evaluate the safety and immunogenicity of a live-attenuated influenza virus vector-based SARS-CoV-2 vaccine (dNS1-RBD) administered by intranasal spray in healthy adults. METHODS: We did double-blind, randomised, placebo-controlled phase 1 and 2 trials, followed by a phase 2 extension trial, at a single centre in Jiangsu, China. Healthy adults (≥18 years) who had negative serum or fingertip blood total antibody tests for SARS-CoV-2 (in phases 1 and 2), with no prevalent SARS-CoV-2 infection or history of infection and no SARS-CoV-2 vaccination history (in all three trials reported here), were enrolled. Participants were randomly allocated (4:1 in phase 1, 2:1 in phase 2, and 1:1 in the extension trial) to receive two intranasal doses of the dNS1-RBD vaccine or placebo on days 0 and 14 or, for half of the participants in phase 2, on days 0 and 21. To avoid cross-contamination during administration, vaccine and placebo recipients were vaccinated in separate rooms in the extension trial. The phase 1 primary outcome was safety (adverse events recorded on days 0-44; serious adverse events recorded from day 0 until 12 months after the second dose). In the phase 2 and extension trials, the primary immunogenicity outcomes were SARS-CoV-2-specific T-cell response in peripheral blood (measured by IFN-γ ELISpot), proportion of participants with positive conversion for SARS-CoV-2 receptor-binding domain (RBD)-specific IgG and secretory IgA (s-IgA) antibodies, and concentration of SARS-CoV-2 RBD IgG in serum and SARS-CoV-2 RBD s-IgA in the nasopharynx (measured by ELISA) at 1 month after the second dose in the per-protocol set for immunogenicity. χ2 test and Fisher's exact test were used to analyse categorical data, and t test and Wilcoxon rank sum test to compare the measurement data between groups. These trials were registered with the Chinese Clinical Trial Registry (ChiCTR2000037782, ChiCTR2000039715, and ChiCTR2100048316). FINDINGS: Between Sept 1, 2020, and July 4, 2021, 63, 724, and 297 participants without a history of SARS-CoV-2 vaccination were enrolled in the phase 1, phase 2, and extension trials, respectively. At least one adverse reaction after vaccination was reported in 133 (19%) of 684 participants in the vaccine groups. Most adverse reactions were mild. No vaccine-related serious adverse event was noted. Specific T-cell immune responses were observed in 211 (46% [95% CI 42-51]) of 455 vaccine recipients in the phase 2 trial, and in 48 (40% [31-49]) of 120 vaccine recipients compared with one (1% [0-5]) of 111 placebo recipients (p<0·0001) in the extension trial. Seroconversion for RBD-specific IgG was observed in 48 (10% [95% CI 8-13]) of 466 vaccine recipients in the phase 2 trial (geometric mean titre [GMT] 3·8 [95% CI 3·4-4·3] in responders), and in 31 (22% [15-29]) of 143 vaccine recipients (GMT 4·4 [3·3-5·8]) and zero (0% [0-2]) of 147 placebo recipients (p<0·0001) in the extension trial. 57 (12% [95% CI 9-16]) of 466 vaccine recipients had positive conversion for RBD-specific s-IgA (GMT 3·8 [95% CI 3·5-4·1] in responders) in the phase 2 trial, as did 18 (13% [8-19]) of 143 vaccine recipients (GMT 5·2 [4·0-6·8]) and zero (0% [0-2]) of 147 placebo recipients (p<0·0001) in the extension trial. INTERPRETATION: dNS1-RBD was well tolerated in adults. Weak T-cell immunity in peripheral blood, as well as weak humoral and mucosal immune responses against SARS-CoV-2, were detected in vaccine recipients. Further studies are warranted to verify the safety and efficacy of intranasal vaccines as a potential supplement to current intramuscular SARS-CoV-2 vaccine pools. Steps should be taken in future studies to reduce the potential for cross-contamination caused by the vaccine strain aerosol during administration. FUNDING: National Key Research and Development Program of China, National Science, Fujian Provincial Science, CAMS Innovation Fund for Medical Sciences, and Beijing Wantai Biological Pharmacy Enterprise.


Subject(s)
COVID-19 Vaccines , COVID-19 , Orthomyxoviridae , Viral Vaccines , Adult , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Vaccines, Attenuated/adverse effects
19.
Chem Sci ; 13(13): 3796-3802, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35432891

ABSTRACT

Chiral α-amino ketones are common structural motifs in natural products and pharmaceuticals, as well as important synthons in organic synthesis. Thus, establishing efficient methods for preparing compounds with these privileged scaffolds is an important endeavor in synthetic chemistry. Herein we disclose a new catalytic asymmetric approach for the synthesis of chiral α-amino ketones through a chiral palladium-catalyzed arylation reaction of in situ generated challenging α-keto imines from previously unreported C-acyl N-sulfonyl-N,O-aminals, with arylboronic acids. The current reaction offers a straightforward approach to the asymmetric synthesis of acyclic α-amino ketones in a practical and highly stereocontrolled manner. Meanwhile, the multiple roles of the chiral Pd(ii) complex catalyst in the reaction were also reported.

20.
Front Oncol ; 12: 849552, 2022.
Article in English | MEDLINE | ID: mdl-35372084

ABSTRACT

Pathway-level analysis is a powerful approach enabling the interpretation of post-genomic data at a higher level than that of individual molecules. Molecular-targeted therapy focusing on cascade signaling pathways has become a new paradigm in anticancer therapy, instead of a single protein. However, the approaches to narrowing down the long list of biological pathways are limited. Here, we proposed a strategy for in silico Drug Prescription on biological pathways across pan-Cancers (CDP), by connecting drugs to candidate pathways. Applying on a list of 120 traditional Chinese medicines (TCM), we especially identified the "TCM-pathways-cancers" triplet and constructed it into a heterogeneous network across pan-cancers. Applying them into TCMs, the computational prescribing methods deepened the understanding of the efficacy of TCM at the molecular level. Further applying them into Western medicines, CDP could promote drug reposition avoiding time-consuming developments of new drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...