Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Small ; : e2311431, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366284

ABSTRACT

Renewable electricity-driven seawater splitting presents a green, effective, and promising strategy for building hydrogen (H2 )-based energy systems (e.g., storing wind power as H2 ), especially in many coastal cities. The abundance of Cl- in seawater, however, will cause severe corrosion of anode catalyst during the seawater electrolysis, and thus affect the long-term stability of the catalyst. Herein, seawater oxidation performances of NiFe layered double hydroxides (LDH), a classic oxygen (O2 ) evolution material, can be boosted by employing tungstate (WO4 2- ) as the intercalated guest. Notably, insertion of WO4 2- to LDH layers upgrades the reaction kinetics and selectivity, attaining higher current densities with ≈100% O2 generation efficiency in alkaline seawater. Moreover, after a 350 h test at 1000 mA cm-2 , only trace active chlorine can be detected in the electrolyte. Additionally, O2 evolution follows lattice oxygen mechanism on NiFe LDH with intercalated WO4 2- .

2.
J Transl Med ; 22(1): 134, 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38311726

ABSTRACT

BACKGROUND: Overweight and obesity are established risk factors for various types of cancers including colorectal cancer (CRC). However the underlying molecular mechanisms remain unclear. An in-depth understanding of the oncologic characteristics of overweight and obese CRC at the single-cell level can provide valuable insights for the development of more effective treatment strategies for CRC. METHODS: We conducted single-cell RNA sequencing (scRNA-seq) analysis on tumor and adjacent normal colorectal samples from 15 overweight/obese and 15 normal-weight CRC patients. Immunological and metabolic differences between overweight/obese CRC and non-obese CRC were characterized. RESULTS: We obtained single-cell transcriptomics data from a total of 192,785 cells across all samples. By evaluating marker gene expression patterns, we annotated nine main cell types in the CRC ecosystem. Specifically, we found that the cytotoxic function of effector T cells and NK cells was impaired in overweight/obese CRC compared with non-obese CRC, relating to its metabolic dysregulation. CD4+T cells in overweight/obese CRC exhibited higher expression of immune checkpoint molecules. The antigen-presenting ability of DCs and B cells is down-regulated in overweight/obese CRC, which may further aggravate the immunosuppression of overweight/obese CRC. Additionally, dysfunctional stromal cells were identified, potentially promoting invasion and metastasis in overweight/obese CRC. Furthermore, we discovered the up-regulated metabolism of glycolysis and lipids of tumor cells in overweight/obese CRC, which may impact the metabolism and function of immune cells. We also identified inhibitory interactions between tumor cells and T cells in overweight/obese CRC. CONCLUSIONS: The study demonstrated that overweight/obese CRC has a more immunosuppressive microenvironment and distinct metabolic reprogramming characterized by increased of glycolysis and lipid metabolism. These findings may have implications for the development of novel therapeutic strategies for overweight/obese CRC patients.


Subject(s)
Colorectal Neoplasms , Overweight , Humans , Overweight/complications , Overweight/genetics , Single-Cell Gene Expression Analysis , Ecosystem , Obesity/complications , Obesity/genetics , Colorectal Neoplasms/complications , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Tumor Microenvironment , Transcriptome/genetics
3.
J Colloid Interface Sci ; 662: 596-603, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38367577

ABSTRACT

Seawater electrolysis is gaining recognition as a promising method for hydrogen production. However, severe anode corrosion caused by the high concentration of chloride ions (Cl-) poses a challenge for the long-term oxygen evolution reaction. Herein, an anti-corrosion strategy of oxalate anions intercalation in NiFe layered double hydroxide on nickel foam (NiFe-C2O42- LDH/NF) is proposed. The intercalation of these highly negatively charged C2O42- serves to establish electrostatic repulsion and impede Cl- adsorption. In alkaline seawater, NiFe-C2O42- LDH/NF requires an overpotential of 337 mV to gain the large current density of 1000 mA cm-2 and operates continuously for 500 h. The intercalation of C2O42- is demonstrated to significantly boost the activity and stability of NiFe LDH-based materials during alkaline seawater oxidation.

4.
Biomol Biomed ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38289380

ABSTRACT

The cellular characteristics of intestinal cells involved in the therapeutic effects of astragaloside IV (AS-IV) for treating slow transit constipation (STC) remain unclear. This study aimed to determine the dynamics of colon tissue cells in the STC model and investigate the effects of AS-IV treatment by single-cell RNA sequencing (scRNA-seq). STC mouse models were developed using loperamide, with subsequent treatment using AS-IV. Colon tissues and feces were collected for scRNA-seq and targeted short-chain fatty acid quantification. We integrated scRNA-seq data with network pharmacology to analyze the effect of AS-IV on constipation. AS-IV showed improvement in defecation for STC mice induced by loperamide. Notably, in STC mice, epithelial cells, T cells, B cells, and fibroblasts demonstrated alterations in cell proportions and dysfunctions, which AS-IV partially rectified. AS-IV has the potential to modulate the metabolic pathway of epithelial cells through its interaction with peroxisome proliferator-activated receptor gamma (PPARγ). AS-IV reinstated fecal butyrate levels and improved energy metabolism in epithelial cells. The proportion of naïve CD4+T cells is elevated in STC, and the differentiation of these cells into regulatory T cells (Treg) is regulated by B cells and fibroblasts through the interaction of ligand-receptor pairs. AS-IV treatment can partially alleviate this trend. The status of fibroblasts in STC undergoes alterations, and the FB_C4_Adamdec1 subset, associated with angiogenesis and the Wingless-related integration (Wnt) pathway, emerges. Our comprehensive analysis identifies perturbations of epithelial cells and tissue microenvironment cells in STC and elucidates mechanisms underlying the therapeutic efficacy of AS-IV.

5.
Small ; 20(13): e2307294, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37963858

ABSTRACT

The pursuit of stable and efficient electrocatalysts toward seawater oxidation is of great interest, yet it poses considerable challenges. Herein, the utilization of Cr-doped CoFe-layered double hydroxide nanosheet array is reported on nickel-foam (Cr-CoFe-LDH/NF) as an efficient electrocatalyst for oxygen evolution reaction in alkaline seawater. The Cr-CoFe-LDH/NF catalyst can achieve current densities of 500 and 1000 mA cm -2 with remarkably low overpotentials of only 334 and 369 mV, respectively. Furthermore, it maintains at least 100 h stability when operated at 500 mA cm-2.

6.
Angew Chem Int Ed Engl ; 63(1): e202316522, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37994225

ABSTRACT

Seawater electrolysis is an attractive way of making H2 in coastal areas, and NiFe-based materials are among the top options for alkaline seawater oxidation (ASO). However, ample Cl- in seawater can severely corrode catalytic sites and lead to limited lifespans. Herein, we report that in situ carbon oxyanion self-transformation (COST) from oxalate to carbonate on a monolithic NiFe oxalate micropillar electrode allows safeguard of high-valence metal reaction sites in ASO. In situ/ex situ studies show that spontaneous, timely, and appropriate COST safeguards active sites against Cl- attack during ASO even at an ampere-level current density (j). Our NiFe catalyst shows efficient and stable ASO performance, which requires an overpotential as low as 349 mV to attain a j of 1 A cm-2 . Moreover, the NiFe catalyst with protective surface CO3 2- exhibits a slight activity degradation after 600 h of electrolysis under 1 A cm-2 in alkaline seawater. This work reports effective catalyst surface design concepts at the level of oxyanion self-transformation, acting as a momentous step toward defending active sites in seawater-to-H2 conversion systems.

7.
Molecules ; 28(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37570688

ABSTRACT

Seawater electrolysis has great potential to generate clean hydrogen energy, but it is a formidable challenge. In this study, we report CoFe-LDH nanosheet uniformly decorated on a CuO nanowire array on Cu foam (CuO@CoFe-LDH/CF) for seawater oxidation. Such CuO@CoFe-LDH/CF exhibits high oxygen evolution reaction electrocatalytic activity, demanding only an overpotential of 336 mV to generate a current density of 100 mA cm-2 in alkaline seawater. Moreover, it can operate continuously for at least 50 h without obvious activity attenuation.

8.
Chem Commun (Camb) ; 59(64): 9750-9753, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37482797

ABSTRACT

The presence of chlorine species in seawater can cause severe anode corrosion, highlighting the critical need for the design of efficient and robust electrocatalysts towards the oxygen evolution reaction (OER) for hydrogen production. Herein, we present a chromium doped cobalt carbonate hydroxide nanowire array on nickel foam (Cr-CoCH/NF) as an effective OER electrocatalyst in seawater. In alkaline conditions, Cr-CoCH/NF exhibits a low overpotential of 450 mV to achieve 500 mA cm-2, surpassing that of CoCH/NF (614 mV). Additionally, it demonstrates 200 h of continuous oxygen evolution testing.

9.
Inorg Chem ; 62(20): 7976-7981, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37144756

ABSTRACT

Seawater electrolysis driven by renewable electricity is deemed a promising and sustainable strategy for green hydrogen production, but it is still formidably challenging. Here, we report an iron-doped NiS nanosheet array on Ni foam (Fe-NiS/NF) as a high-performance and stable seawater splitting electrocatalyst. Such Fe-NiS/NF catalyst needs overpotentials of only 420 and 270 mV at 1000 mA cm-2 for the oxygen evolution reaction and hydrogen evolution reaction in alkaline seawater, respectively. Furthermore, its two-electrode electrolyzer needs a cell voltage of 1.88 V for 1000 mA cm-2 with 50 h of long-term electrochemical durability in alkaline seawater. Additionally, in situ electrochemical Raman and infrared spectroscopy were employed to detect the reconstitution process of NiOOH and the generation of oxygen intermediates under reaction conditions.

10.
ACS Appl Mater Interfaces ; 13(41): 48582-48594, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34612043

ABSTRACT

As the frontier in heterogeneous catalyst, a monomer and positively charged active sites in the single-atom catalyst (SAC), anchored by high electronegative N, O, S, P, etc., atoms, may not be active for the multispecies (O2, substrates, intermediates, solvent etc.) involved liquid-phase aerobic oxidation. Here, with catalytic, aerobic oxidation of 5-hydroxymethylfurfural as an example, Pt SAC (Pt1-N4) was synthesized and tested first. With commercial Pt/C (Pt loading of 5 wt %) as a benchmark, 2,5-furandicarboxylic acid (FDCA) yield of 97.6% was obtained. Pt SAC (0.56 wt %) gave a much lower FDCA yield (28.8%). By changing the coordination atoms from highly electronegative N to low electronegative Co atoms, the prepared Pt single-atom alloy (SAA, Pt1-Co3) catalyst with ultralow Pt loading (0.06 wt %) gave a much high FDCA yield (99.6%). Density functional theory (DFT) calculations indicated that positively charged Pt sites (+0.712e) in Pt1-N4 almost lost the capability for oxygen adsorption and activation, as well as the adsorption for the key intermediate. In Pt1-Co3 SAA, the central negatively charged Pt atom (-0.446e) facilitated the adsorption of the key intermediate; meanwhile, the nearby Co atoms around the Pt atom constituted the O2-preferred adsorption/activation sites. This work shows the difference between the SAC with NPs and the SAA during liquid-phase oxidation of HMF and gives a useful guide in the future single-atom catalyst design in other related reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...