Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(15)2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34372049

ABSTRACT

Fish scales (FSs) are fishery wastes that can cause environmental pollution. This study aimed to solve this environmental problem. FSs were used as a flame retardant for polymer materials, making them valuable. Fish scales were combined with a commercial flame retardant, ammonium polyphosphate (APP), through synergistic effects to reduce the amount of commercial flame retardant. The use of FSs conforms to the concept of a circular economy and lowers costs by reducing the consumption of APP. Thermogravimetric analysis (TGA), integral procedural decomposition temperature (IPDT), pyrolysis kinetics, limiting oxygen index (LOI), the Underwriters Laboratories 94 (UL94) flammability test, scanning election microscopy, Raman spectroscopy, and energy-dispersive X-ray spectroscopy were used to determine the thermal properties, flame retardant properties, flame retardant mechanism, char morphology, and composition of the composites. The TGA results indicated that the addition of 40% flame retardant raised the char residue from 16.45 wt.% (pure EP) to 36.07 wt.%; IPDT from 685.6 °C (pure EP) to 1143.1°C; LOI from 21% (pure EP) to 30%; and UL94 classification from fail (pure EP) to V-0. These results suggest an increase in char residue, which indicates better protection of the polymer matrix material. The improvements in IPDT, LOI, and UL94 classification, which indicate greater thermal stability, lower flammability (from flammable to fireproof), and higher flammability rating (from fail to V-0), respectively, suggest that the composite material has favorable thermal properties and is less inflammable.

2.
Front Cell Neurosci ; 12: 478, 2018.
Article in English | MEDLINE | ID: mdl-30581378

ABSTRACT

Neural stem cells (NSCs) have been shown as a potential source for replacing degenerated neurons in neurodegenerative diseases. However, the therapeutic potential of these cells is limited by the lack of effective methodologies for controlling their differentiation. Inducing endogenous pools of NSCs by small molecule can be considered as a potential approach of generating the desired cell types in large numbers. Here, we reported the characterization of a small molecule (Methyl 3,4-dihydroxybenzoate; MDHB) that selectively induces hippocampal NSCs to differentiate into cholinergic motor neurons which expressed synapsin 1 (SYN1) and postsynaptic density protein 95 (PSD-95). Studies on the mechanisms revealed that MDHB induced the hippocampal NSCs differentiation into cholinergic motor neurons by inhibiting AKT phosphorylation and activating autophosphorylation of GSK3ß at tyrosine 216. Furthermore, we found that MDHB enhanced ß-catenin degradation and abolished its entering into the nucleus. Collectively, this report provides the strong evidence that MDHB promotes NSCs differentiation into cholinergic motor neurons by enhancing gene Isl1 expression and inhibiting cell cycle progression. It may provide a basis for pharmacological effects of MDHB directed on NSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...