Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Int J Mol Sci ; 25(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474189

ABSTRACT

Coronary artery spasm (CAS) plays an important role in the pathogeneses of various ischemic heart diseases and has gradually become a common cause of life-threatening arrhythmia. The specific molecular mechanism of CAS has not been fully elucidated, nor are there any specific diagnostic markers for the condition. Therefore, this study aimed to examine the specific molecular mechanism underlying CAS, and screen for potential diagnostic markers. To this end, we successfully constructed a rat CAS model and achieved in vitro culture of a human coronary-artery smooth-muscle cell (hCASMC) contraction model. Possible molecular mechanisms by which protein kinase C (PKC) regulated CAS through the C kinase-potentiated protein phosphatase 1 inhibitor of 17 kDa (CPI-17)/myosin II regulatory light chain (MLC2) pathway were studied in vivo and in vitro to screen for potential molecular markers of CAS. We performed hematoxylin and eosin staining, myocardial zymogram, and transmission electron microscopy to determine myocardial and coronary artery injury in CAS rats. Then, using immunohistochemical staining, immunofluorescence staining, and Western blotting, we further demonstrated a potential molecular mechanism by which PKC regulated CAS via the CPI-17/MLC2 pathway. The results showed that membrane translocation of PKCα occurred in the coronary arteries of CAS rats. CPI-17/MLC2 signaling was observably activated in coronary arteries undergoing CAS. In addition, in vitro treatment of hCASMCs with angiotensin II (Ang II) increased PKCα membrane translocation while consistently activating CPI-17/MLC2 signaling. Conversely, GF-109203X and calphostin C, specific inhibitors of PKC, inactivated CPI-17/MLC2 signaling. We also collected the coronary artery tissues from deceased subjects suspected to have died of CAS and measured their levels of phosphorylated CPI-17 (p-CPI-17) and MLC2 (p-MLC2). Immunohistochemical staining was positive for p-CPI-17 and p-MLC2 in the tissues of these subjects. These findings suggest that PKCα induced CAS through the CPI-17/MLC2 pathway; therefore, p-CPI-17 and p-MLC2 could be used as potential markers for CAS. Our data provide novel evidence that therapeutic strategies against PKC or CPI-17/MLC2 signaling might be promising in the treatment of CAS.


Subject(s)
Coronary Vasospasm , Animals , Humans , Rats , Biomarkers/metabolism , Death, Sudden, Cardiac , Phosphoproteins/metabolism , Phosphorylation , Protein Kinase C/metabolism , Protein Kinase C-alpha/metabolism
2.
Brain Sci ; 14(2)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38391735

ABSTRACT

The amygdala is a core region in the limbic system that is highly sensitive to stress. Astrocytes are key players in stress disorders such as anxiety and depression. However, the effects of stress on the morphology and function of amygdala astrocytes and its potential mechanisms remain largely unknown. Hence, we performed in vivo and in vitro experiments using a restraint stress (RS) rat model and stress-induced astrocyte culture, respectively. Our data show that norepinephrine (NE) content increased, cytotoxic edema occurred, and aquaporin-4 (AQP4) expression was up-regulated in the basolateral amygdala (BLA) obtained from RS rats. Additionally, the p38 mitogen-activated protein kinase (MAPK) pathway was also observed to be significantly activated in the BLA of rats subjected to RS. The administration of NE to in vitro astrocytes increased the AQP4 level and induced cell edema. Furthermore, p38 MAPK signaling was activated. The NE inhibitor alpha-methyl-p-tyrosine (AMPT) alleviated cytotoxic edema in astrocytes, inhibited AQP4 expression, and inactivated the p38 MAPK pathway in RS rats. Meanwhile, in the in vitro experiment, the p38 MAPK signaling inhibitor SB203580 reversed NE-induced cytotoxic edema and down-regulated the expression of AQP4 in astrocytes. Briefly, NE-induced activation of the p38 MAPK pathway mediated cytotoxic edema in BLA astrocytes from RS rats. Thus, our data provide novel evidence that NE-induced p38 MAPK pathway activation may be one of the mechanisms leading to cytotoxic edema in BLA under stress conditions, which also could enable the development of an effective therapeutic strategy against cytotoxic edema in BLA under stress and provide new ideas for the treatment of neuropsychiatric diseases.

3.
Sci Rep ; 13(1): 14999, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37696922

ABSTRACT

This study differentiates myocardial infarction (MI) and strangulation death (STR) from the perspective of amino acid metabolism. In this study, MI mice model via subcutaneous injection of isoproterenol and STR mice model by neck strangulation were constructed, and were randomly divided into control (CON), STR, mild MI (MMI), and severe MI (SMI) groups. The metabolomics profiles were obtained by liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics. Principal component analysis, partial least squares-discriminant analysis, volcano plots, and heatmap were used for discrepancy metabolomics analysis. Pathway enrichment analysis was performed and the expression of proteins related to metabolomics was detected using immunohistochemical and western blot methods. Differential metabolites and metabolite pathways were screened. In addition, we found the expression of PPM1K was significantly reduced in the MI group, but the expression of p-mTOR and p-S6K1 were significantly increased (all P < 0.05), especially in the SMI group (P < 0.01). The expression of Cyt-C was significantly increased in each group compared with the CON group, especially in the STR group (all P < 0.01), and the expression of AMPKα1 was significantly increased in the STR group (all P < 0.01). Our study for the first time revealed significant differences in amino acid metabolism between STR and MI.


Subject(s)
Metabolomics , Myocardial Infarction , Animals , Mice , Amino Acid Motifs , Blotting, Western , Myocardial Infarction/diagnosis , Amino Acids
4.
Stress ; 26(1): 2254566, 2023 11.
Article in English | MEDLINE | ID: mdl-37665601

ABSTRACT

The heart is the main organ of the circulatory system and requires fatty acids to maintain its activity. Stress is a contributor to aggravating cardiovascular diseases and even death, and exacerbates the abnormal lipid metabolism. The cardiac metabolism may be disturbed by stress. Cholecystokinin (CCK), which is a classical peptide hormone, and its receptor (CCKR) are expressed in myocardial cells and affect cardiovascular function. Nevertheless, under stress, the exact role of CCKR on cardiac function and cardiac metabolism is unknown and the mechanism is worth exploring. After unpredictable stress, a common stress-inducing model that induces the development of mood disorders such as anxiety and reduces motivated behavior, we found that the abnormal contraction and diastole of the heart, myocardial injury, oxidative stress and inflammation of mice were aggravated. Cholecystokinin A receptor and cholecystokinin B receptor knockout (CCK1R2R-/-) significantly reversed these changes. Mechanistically, fatty acid metabolism was found to be altered in CCK1R2R-/- mice. Differential metabolites, especially L-tryptophan, L-aspartic acid, cholesterol, taurocholic acid, ADP, oxoglutaric acid, arachidonic acid and 17-Hydroxyprogesterone, influenced cardiac function after CCK1R2R knockout and unpredictable stress. We conclude that CCK1R2R-/- ameliorated myocardial damage caused by unpredictable stress via altering fatty acid metabolism.


Subject(s)
Lipid Metabolism , Stress, Psychological , Animals , Mice , Heart , Anxiety , Fatty Acids
5.
Tissue Cell ; 80: 101984, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36434828

ABSTRACT

Determining myocardial infarction (MI) and mechanical asphyxia (MA) was one of the most challenging tasks in forensic practice. The present study aimed to investigate the potential of fatty acid (FAs) metabolism, and lipid alterations in determining MI and MA. MA and MI mouse models were constructed, and metabolic profiles were obtained by LC-MS-based untargeted metabolomics. The metabolic alterations were explored using the PCA, OPLS-DA, the Wilcoxon test, and fold change analysis. The contents of lipid droplets (LDs) were detected by the transmission scanning electron microscope and Oil red O staining. The immunohistochemical assay was performed to detect CD36 and dysferlin. The ceramide was assessed by LC-MS. PCA showed considerable differences in the metabolite profiles, and the well-fitting OPLS-DA model was developed to screen differential metabolites. Thereinto, 9 metabolites in the MA were reduced, while metabolites were up- and down-regulated in MI. The increased CD36 suggested that MI and MA could enhance the intake of FAs and disturb energy metabolism. The increased LDs, decreased dysferlin, and increased ceramide (C18:0, C22:0, and C24:0) were observed in MI groups, confirming the lipid deposition. The present study indicated significant differences in myocardial FAs metabolism and lipid alterations between MI and MA, suggesting that FAs metabolism and related proteins, certain ceramide may harbor the potential as biomarkers for discrimination of MI and MA.


Subject(s)
Asphyxia , Ceramides , Fatty Acids , Myocardial Infarction , Animals , Mice , Asphyxia/complications , Biomarkers/metabolism , Ceramides/metabolism , Dysferlin , Fatty Acids/metabolism , Myocardial Infarction/diagnosis , Pilot Projects
6.
Fa Yi Xue Za Zhi ; 38(3): 374-384, 2022 Jun 25.
Article in English, Chinese | MEDLINE | ID: mdl-36221833

ABSTRACT

Hereditary cardiac disease accounts for a large proportion of sudden cardiac death (SCD) in young adults. Hereditary cardiac disease can be divided into hereditary structural heart disease and channelopathies. Hereditary structural heart disease mainly includes hereditary cardiomyopathy, which results in arhythmia, heart failure and SCD. The autopsy and histopathological examinations of SCD caused by channelopathies lack characteristic morphological manifestations. Therefore, how to determine the cause of death in the process of examination has become one of the urgent problems to be solved in forensic identification. Based on the review of recent domestic and foreign research results on channelopathies and hereditary cardiomyopathy, this paper systematically reviews the pathogenesis and molecular genetics of channelopathies and hereditary cardiomyopathy, and discusses the application of postmortem genetic testing in forensic identification, to provide reference for forensic pathology research and identification of SCD.


Subject(s)
Channelopathies , Heart Diseases , Autopsy/methods , Channelopathies/complications , Channelopathies/genetics , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/pathology , Genetic Testing , Heart Diseases/complications , Heart Diseases/diagnosis , Heart Diseases/genetics , Humans , Young Adult
7.
Front Cardiovasc Med ; 9: 970045, 2022.
Article in English | MEDLINE | ID: mdl-36158819

ABSTRACT

We report findings in a 34-year-old female patient who presented with fulminant myocarditis 8 days after receiving the first dose of the ZF2001 RBD-subunit vaccine against coronavirus disease 2019 (COVID-19). Autopsy showed severe interstitial myocarditis, including multiple patchy infiltrations of lymphocytes and monocytes in the myocardium of the left and right ventricular walls associated with myocyte degeneration and necrosis. This report highlights the details of clinical presentations and autopsy findings of myocarditis after ZF2001 (RBD-subunit vaccine) vaccination. The correlation between vaccination and death due to myocarditis is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...