Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 12: 660552, 2021.
Article in English | MEDLINE | ID: mdl-34122132

ABSTRACT

In this study, waste fat from the Chinese soft-shelled turtle (Pelodiscus sinensis) was used as the raw material, and soft-shelled turtle oil (SSTO) was extracted by water heating. Analysis of the fatty acid composition of SSTO revealed that unsaturated fatty acids (UFAs) comprised more than 70% of the oil, of which more than 20% were omega-3 poly-UFAs. DPPH radical scavenging and cellular ROS assays confirmed the reduction of oxidative stress by SSTO. In D-galactose-induced aging rats, SSTO feeding alone or in combination with swimming training resulted in improved memory and physical strength. In addition, SSTO feeding with swimming intervention significantly increased the SOD level and maintained better blood pressure in the aged rats. The serum DHEAS and soleus muscle glycogen level were also highly correlated with SSTO feeding and swimming training. In conclusion, the results of this study demonstrated that SSTO has the potential to be developed into a health food that exerts anti-aging effects, and those effects are stronger when combined with daily swimming exercise.

2.
Anal Chim Acta ; 1146: 70-76, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33461721

ABSTRACT

An electrochemical-biosensor (EC-biosensor) microchip consisting of screen-printed electrodes and a double-layer reagent paper detection zone impregnated with amaranth is proposed for the rapid determination of microalbuminuria (MAU) in human urine samples. Under the action of an applied deposition potential, the amaranth is adsorbed on the electrode surface and the subsequent reaction between the modified surface and the MAU content in the urine sample prompts the formation of an inert layer on the electrode surface. The inert layer impedes the transfer of electrons and hence produces a drop in the response peak current, from which the MAU concentration can then be determined. The measurement results obtained for seven artificial urine samples with known MAU concentrations in the range of 0.1-40 mg/dL show that the measured response peak current is related to the MAU concentration with a determination coefficient of R2 = 0.991 in the low concentration range of 0.1-10 mg/dL and R2 = 0.996 in the high concentration range of 10-40 mg/dL. Furthermore, the detection results obtained for 82 actual chronic kidney disease (CKD) patients show an excellent agreement (R2 = 0.988) with the hospital analysis results. Overall, the results confirm that the proposed detection platform provides a convenient and reliable approach for performing sensitive point-of-care testing (POCT) of the MAU content in human urine samples.


Subject(s)
Biosensing Techniques , Renal Insufficiency, Chronic , Albuminuria/diagnosis , Electrochemical Techniques , Electrodes , Humans , Renal Insufficiency, Chronic/diagnosis
3.
Anal Chim Acta ; 1062: 94-101, 2019 Jul 25.
Article in English | MEDLINE | ID: mdl-30948000

ABSTRACT

A multifunctional microchip-based distillation apparatus for distilling and detecting formaldehyde (CH2O) in food products is developed. The presented apparatus comprises a disposable microchip, a steam supply system, and a recirculating cooling water supply. The microchip is formed on PMMA substrates by laser ablation and includes a sample zone, a flash distillation zone, a cooling zone, a condensation zone, and a collection zone. In the presented method, the CH2O sample is placed in the microchip and is vaporized by the high-throughput vapor supply and driven through the condensed zone. The condensed CH2O liquid is guided into the collection zone of the microchip. Finally, the distilled CH2O solution is determined using an AHMT spectrometry method and a paper-based RGB (red, green and blue) intensity analysis method. A distilled efficiency is as high as 98%, when a vapor stream rate is 0.4 ml/min and a distilled time is 10 min. Moreover, both detection methods show linear relationships of the corresponding CH2O concentrations. The actual sample suitability of the presented multifunctional microchip-based distillation apparatus is confirmed by analyzing the CH2O concentrations of 21 commodities.

4.
Food Chem ; 286: 316-321, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-30827613

ABSTRACT

A convenient assay platform comprising a PET/paper chip (PP-chip) and a smart analytical device is developed for detection of sulphur dioxide (SO2) concentration. In the presented approach, the distilled SO2 solution is dropped onto the detection region of the PP-chip and undergoes a reaction with an acid-based reagent. The resulting color variation is analyzed through a high-resolution camera (CMOS) and the reacted image is processed by a RGB (red, green and blue) analytical app installed on a smartphone. Results show that the known SO2 concentrations ranging from 10 to 300 ppm indicate that the high linear relationship (R2 = 0.9981) between the (R (red) + G (green) - B (blue)) value and SO2 concentration. Moreover, a high measurement resolution is equal to 1.45 ppm/a.u. The presented assay platform was proved to detect the SO2 concentrations of twenty-five practical food samples. Compared with the developed assay platform and certified inspection technique, the deviation of SO2 measurement does not exceed 3.82%. It was satisfactory to apply this developed assay platform to analyze the SO2 concentration in the practical samples.


Subject(s)
Food Analysis/methods , Paper , Sulfur Dioxide/analysis , Food Analysis/instrumentation , Smartphone , Software
5.
Opt Express ; 16(19): 14792-800, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18795016

ABSTRACT

In this paper, we demonstrate that the the bandwidth of the supercontinuum spectrum generated in a large mode area sapphire fiber can be enhanced by employing triple pumping sources. Three pumping sources with wavelengths of 784 nm, 1290 nm, and 2000 nm are launched into a single crystal sapphire fiber that is 5 cm in length and has a core diameter of 115 microm. The nonlinear interactions due to self-phase modulation and four-wave mixing form a broadband supercontinuum that covers the UV, visible, near-IR and lower mid-IR regions. Furthermore, we explore the possibility of generating a broadband supercontinuum expanding from the UV to far-IR region by increasing the number of pumping sources with wavelengths in the mid- and far-IR.


Subject(s)
Aluminum Oxide/chemistry , Computer-Aided Design , Fiber Optic Technology/instrumentation , Lasers , Lighting/instrumentation , Models, Theoretical , Computer Simulation , Equipment Design , Equipment Failure Analysis , Infrared Rays , Ultraviolet Rays
6.
Opt Express ; 16(6): 4085-93, 2008 Mar 17.
Article in English | MEDLINE | ID: mdl-18542506

ABSTRACT

In this paper, an investigation on broadband IR supercontinuum generation in single crystal sapphire fibers is presented. It is experimentally demonstrated that broadband IR supercontinuum spectrum (up to 3.2microm) can be achieved by launching ultra-short femtosecond laser pulses into single crystal sapphire fiber with a dimension 115microm in diameter and 5cm in length, which covers both the near IR spectral region and the lower end of the mid-IR spectral range. Furthermore, the mechanism of supercontinuum generation in single crystal sapphire fibers is briefly addressed. When the fiber length is shorter than the dispersion length, the self-phase modulation dominates the broadening effect. In this case, the broad supercontinuum spectrum with a smooth profile can be obtained. However, when the fiber length is longer than the dispersion length, the soliton-related dynamics accompanied by the self-phase modulation dominates the broadening effect. There are discrete spikes in the spectrum (corresponding to different order solitons). The above assumption of supercontinuum generation mechanism is quantitatively modeled by the computer simulation program and verified by the experimental results. Thus, one can adjust the spectral profile by properly choosing the length of the sapphire fibers. The broad IR spectral nature of this supercontinuum source can be very useful in a variety of applications such as broadband LADAR, remote sensing, and multi-spectrum free space communications.


Subject(s)
Aluminum Oxide/chemistry , Aluminum Oxide/radiation effects , Fiber Optic Technology/instrumentation , Lasers , Lighting/instrumentation , Equipment Design , Equipment Failure Analysis , Infrared Rays , Lighting/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...