Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(6): e0157785, 2016.
Article in English | MEDLINE | ID: mdl-27333297

ABSTRACT

Vitrification of matured oocytes is widely adopted in human clinics and animal research laboratories. Cryopreservation of immature oocytes, particularly those at metaphase I (MI), remains a challenge. In the present work, mouse MI oocytes denuded of cumulus cells were vitrified and warmed (V/W) either prior to (V/W-BEFORE-IVM, n = 562) or after (V/W-AFTER-IVM, n = 664) in vitro maturation (IVM). Derivative metaphase II (MII) oocytes were then used for intracytoplasmic sperm injection (ICSI). In the control groups, in vivo matured MII oocytes were used freshly (FRESH-MII, n = 517) or after V/W (MII-V/W, n = 617). In vitro and in vivo developmental competencies were compared among groups. Satisfactory blastocyst rates were achieved in V/W-BEFORE-IVM (27.5%) and V/W-AFTER-IVM (32.4%) groups, albeit as expected still lower than those from fresh-MII (56.1%) or MII-V/W (45.6%) oocytes. Similarly, the term development rates from V/W-BEFORE-IVM and V/W-AFTER-IVM were 12.4% and 16.7% respectively, acceptable but lower than those of the fresh-MII (41.2%) and MII-V/W (23.3%) groups. These data demonstrate that oocytes collected at MI stage are amenable to V/W, which can be performed before or after IVM with acceptable development rates including production of healthy pups. These findings provide useful knowledge to researchers and clinical practitioners for preservation and use of the otherwise discarded MI oocytes.


Subject(s)
Metaphase , Oocytes/cytology , Specimen Handling/methods , Vitrification , Animals , Animals, Newborn , Cell Survival , Embryo Transfer , Embryonic Development , Female , In Vitro Oocyte Maturation Techniques , Male , Mice, Inbred C57BL , Sperm Injections, Intracytoplasmic
2.
PLoS One ; 9(9): e106864, 2014.
Article in English | MEDLINE | ID: mdl-25187950

ABSTRACT

BACKGROUND: Pigs are an optimal animal for conducting biomedical research because of their anatomical and physiological resemblance to humans. In contrast to the abundant resources available in the study of mice, few fluorescent protein-harboring porcine models are available for preclinical studies. In this paper, we report the successful generation and characterization of a transgenic DsRed-Monomer porcine model. METHODS: The transgene comprised a CMV enhancer/chicken-beta actin promoter and DsRed monomeric cDNA. Transgenic pigs were produced by using pronuclear microinjection. PCR and Southern blot analyses were applied for identification of the transgene. Histology, blood examinations and computed tomography were performed to study the health conditions. The pig amniotic fluid progenitor/stem cells were also isolated to examine the existence of red fluorescence and differentiation ability. RESULTS: Transgenic pigs were successfully generated and transmitted to offspring at a germ-line transmission rate of 43.59% (17/39). Ubiquitous expression of red fluorescence was detected in the brain, eye, tongue, heart, lung, liver, pancreas, spleen, stomach, small intestine, large intestine, kidney, testis, and muscle; this was confirmed by histology and western blot analyses. In addition, we confirmed the differentiation potential of amniotic fluid progenitor stem cells isolated from the transgenic pig. CONCLUSIONS: This red fluorescent pig can serve as a host for other fluorescent-labeled cells in order to study cell-microenvironment interactions, and can provide optimal red-fluorescent-labeled cells and tissues for research in developmental biology, regenerative medicine, and xenotransplantation.


Subject(s)
Animals, Genetically Modified , Founder Effect , Luminescent Proteins/genetics , Swine/genetics , Zygote Intrafallopian Transfer/veterinary , Actins/genetics , Actins/metabolism , Amniotic Fluid/cytology , Animals , Cell Differentiation , Cells, Cultured , Chickens , Cytomegalovirus/chemistry , Cytomegalovirus/genetics , DNA, Complementary/administration & dosage , Enhancer Elements, Genetic , Female , Fluorescence , Gene Expression , Genes, Reporter , Luminescent Proteins/metabolism , Male , Microinjections , Promoter Regions, Genetic , Stem Cells/cytology , Stem Cells/physiology , Swine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...