Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(1): 271-280, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38157315

ABSTRACT

Electronic coupling is important in determining charge-transfer rates and dynamics. Coupling strength is sensitive to both intermolecular, e.g., orientation or distance, and intramolecular degrees of freedom. Hence, it is challenging to build an accurate machine learning model to predict electronic coupling of molecular pairs, especially for those derived from the amorphous phase, for which intermolecular configurations are much more diverse than those derived from crystals. In this work, we devise a new prediction algorithm that employs two consecutive KRR models. The first model predicts molecular orbitals (MOs) from structural variation for each fragment, and coupling is further predicted by using the overlap integral included in a second model. With our two-step procedure, we achieved mean absolute errors of 0.27 meV for an ethylene dimer and 1.99 meV for a naphthalene pair, much improved accuracy amounting to 14-fold and 3-fold error reductions, respectively. In addition, MOs from the first model can also be the starting point to obtain other quantum chemical properties from atomistic structures. This approach is also compatible with a MO predictor with sufficient accuracy.

2.
J Chem Phys ; 159(3)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37458343

ABSTRACT

Electron transfer (ET) is a fundamental process in chemistry and biochemistry, and electronic coupling is an important determinant of the rate of ET. However, the electronic coupling is sensitive to many nuclear degrees of freedom, particularly those involved in intermolecular movements, making its characterization challenging. As a result, dynamic disorder in electron transfer coupling has rarely been investigated, hindering our understanding of charge transport dynamics in complex chemical and biological systems. In this work, we employed molecular dynamic simulations and machine-learning models to study dynamic disorder in the coupling of hole transfer between neighboring ethylene and naphthalene dimer. Our results reveal that low-frequency modes dominate these dynamics, resulting primarily from intermolecular movements such as rotation and translation. Interestingly, we observed an increasing contribution of translational motion as temperature increased. Moreover, we found that coupling is sub-Ohmic in its spectral density character, with cut-off frequencies in the range of 102 cm-1. Machine-learning models allow direct study of dynamics of electronic coupling in charge transport with sufficient ensemble trajectories, providing further new insights into charge transporting dynamics.

3.
J Chem Theory Comput ; 18(2): 1017-1029, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-34982933

ABSTRACT

Singlet fission (SF) is a process where a singlet exciton is split into a pair of triplet excitons. The increase in the excitonic generation can be exploited to enhance the efficiency of solar cells. Molecules with conjugated π bonds are commonly developed for optoelectronic applications including SF, due to their low energy gaps. The electronic coupling for SF in such well-stacked π-conjugated molecule pairs can be rather limited due to the orthogonal π and π* orbital overlaps that are involved in the coupling elements, leading to a large cancellation in the coupling. In the present work, we show that such limits can be removed by involving triplet states of different origins, such as those with nonbonding n orbitals. We demonstrate such an effect for formaldehyde and methylenimine dimers, with a low-lying n-π* triplet state (T1) in addition to the π-π* triplet (T2). We show that the coupling can be enhanced by 40 times or more for the formaldehyde dimer, and 15 times or more for the methylenimine dimer, with the T1-T2 state as the end product of SF. With 1759 randomly oriented pairs of formaldehyde derived from a molecular dynamics simulation, the coupling from a singlet exciton to this T1-T2 state is, on an average, almost two times larger than that for a regular T1-T1 state. We investigated a few families that have been shown to be prospective candidates for SF, using our proposed strategy. However, our unfavorable results indicate that there are clear difficulties in fulfilling the ES1 ≳ ET1 + ET2 energy criterion. Nevertheless, our results provide a new molecular design concept for better SF (and triplet-triplet annihilation, TTA) materials that allows future development.

4.
Analyst ; 146(23): 7118-7125, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34739011

ABSTRACT

In this study we investigated the synergistic effects of the chirality (molecular structure) and surface morphology (nanostructure) of a newly designed sensing platform for the stereoselective recognition of biomolecules. We synthesized 3,4-ethylenedioxythiophene monomers presenting an OH functional group on the side chain (EDOT-OH) with either R or S chirality and then electropolymerized them in a template-free manner to engineer poly(EDOT-OH) nanotubes and smooth films with R or S chirality. We used a quartz crystal microbalance (QCM) to examine the differential binding of fetal bovine serum, RGD peptide, insulin, and (R)- and (S)-mandelic acid (MA) on these chiral polymeric platforms. All of these biomolecules bound stereoselectively and with greater affinity toward the nanotubes than to the smooth films. The sensitive chiral recognition of (S)- and (R)-MA on the (R)-poly(EDOT-OH) nanotube surface occurred with the highest chiral discrepancy ratio of 1.80. In vitro experiments revealed a greater degree of protein deposition from MCF-7 cells on the chiral nanotube surfaces. We employed ab initio molecular dynamics simulations and density functional theory calculations to investigate the mechanism underlying the sensitive chiral recognition between the chiral sensing platforms and the chiral analyte molecules.


Subject(s)
Biopolymers , Bridged Bicyclo Compounds, Heterocyclic , Computer Simulation , Quartz Crystal Microbalance Techniques
5.
Adv Healthc Mater ; 10(24): e2100993, 2021 12.
Article in English | MEDLINE | ID: mdl-34549550

ABSTRACT

Fluorescence probes emitting in the second near-infrared (NIR-II, 1000-1700 nm) window with the ability for deep-tissue imaging in mammals herald a new era in surgical methodology. However, the brightness of these NIR-II probes is still far from satisfactory due to their low fluorescence quantum yields (QYs), preventing the observation of high-resolution images such as whole-organ vascular networks in real time. Described here is the molecular engineering of a series of semiconducting polymer dots (Pdots) incorporated with aggregation-induced emission moieties to exhibit the QYs as high as 14% in the NIR-II window. Benefiting from the ultrahigh brightness, a 1400 nm long-pass filter is utilized to realize in vivo 3D tumor mapping in mice. To further understand how the geometrical and electron structures of the semiconducting polymers affect their optical properties, the in-depth and thorough density-functional theory calculations are performed to interpret the experimental results. This study lays the groundwork for further molecular design of highly bright NIR-II Pdots.


Subject(s)
Neoplasms , Quantum Dots , Animals , Fluorescence , Fluorescent Dyes , Mice , Neoplasms/diagnostic imaging , Optical Imaging , Polymers , Semiconductors
6.
Entropy (Basel) ; 22(10)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33286870

ABSTRACT

Extending our previous work, quantum dynamic simulations are performed to study low temperature heat transport in a spin-boson model where a two-level subsystem is coupled to two independent harmonic baths. Multilayer multiconfiguration time-dependent Hartree theory is used to numerically evaluate the thermal flux, for which the bath is represented by hundreds to thousands of modes. The simulation results are compared with the approximate Redfield theory approach, and the physics is analyzed versus different physical parameters.

7.
Org Lett ; 22(24): 9751-9756, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33261315

ABSTRACT

A trisulfur-radical-anion (S3̇-)-triggered C(sp2)-H amination of α,ß-unsaturated carbonyl derivatives with simple amines has been demonstrated. This protocol provides convenient access to a variety of synthetically valuable N-unprotected and secondary ß-enaminones with absolute Z selectivity and tertiary ß-enaminones with E selectivity. Mechanistic probe and electronic structure theory calculations suggest that S3̇- initiates the nucleophilic attacks via a thiirane intermediate.

8.
Biopolymers ; 111(12): e23410, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33216981

ABSTRACT

Inosine is an important RNA modification, furthermore RNA oxidation has gained interest due, in part, to its potential role in the development/progression of disease as well as on its impact on RNA structure and function. In this report we established the base pairing abilities of purine nucleobases G, I, A, as well as their corresponding, 8-oxo-7,8-dihydropurine (common products of oxidation at the C8-position of purines), and 8-bromopurine (as probes to explore conformational changes), derivatives, namely 8-oxoG, 8-oxoI, 8-oxoA, 8-BrG, and 8-BrI. Dodecamers of RNA were obtained using standard phosphoramidite chemistry via solid-phase synthesis, and used as models to establish the impact that each of these nucleobases have on the thermal stability of duplexes, when base pairing to canonical and noncanonical nucleobases. Thermal stabilities were obtained from thermal denaturation transition (Tm ) measurements, via circular dichroism (CD). The results were then rationalized using models of base pairs between two monomers, via density functional theory (DFT), that allowed us to better understand potential contributions from H-bonding patterns arising from distinct conformations. Overall, some of the important results indicate that: (a) an anti-I:syn-A base pair provides thermal stability, due to the absence of the exocyclic amine; (b) 8-oxoG base pairs like U, and does not induce destabilization within the duplex when compared to the pyrimidine ring; (c) a U:G wobble-pair is only stabilized by G; and (d) 8-oxoA displays an inherited base pairing promiscuity in this sequence context. Gaining a better understanding of how this oxidatively generated lesions potentially base pair with other nucleobases will be useful to predict various biological outcomes, as well as in the design of biomaterials and/or nucleotide derivatives with biological potential.


Subject(s)
Adenosine/chemistry , Guanosine/chemistry , Inosine/chemistry , RNA/chemistry , Adenosine/genetics , Base Pairing , Guanine/analogs & derivatives , Guanine/chemistry , Guanosine/genetics , Hydrogen Bonding , Inosine/genetics , Models, Chemical , Models, Genetic , Molecular Structure , Nucleic Acid Conformation , RNA/genetics , Thermodynamics
9.
Cell Rep ; 33(2): 108248, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33053359

ABSTRACT

Compartmentalization by liquid-liquid phase separation is implicated in transcription. It remains unclear whether and how transcriptional condensates accelerate the search of transcriptional regulatory factors for their target sites. Furthermore, the molecular mechanisms by which regulatory factors nucleate on chromatin to assemble transcriptional condensates remain incompletely understood. The CBX-PRC1 complexes compartmentalize key developmental regulators for repression through phase-separated condensates driven by the chromobox 2 (CBX2) protein. Here, by using live-cell single-molecule imaging, we show that CBX2 nucleates on chromatin independently of H3K27me3 and CBX-PRC1. The interactions between CBX2 and DNA are essential for nucleating CBX-PRC1 on chromatin to assemble condensates. The assembled condensates shorten 3D diffusion time and reduce trials for finding specific sites through revisiting the same or adjacent sites repetitively, thereby accelerating CBX2 in searching for target sites. Overall, our data suggest a generic mechanism by which transcriptional regulatory factors nucleate to assemble condensates that accelerate their target-search process.


Subject(s)
Single Molecule Imaging , Transcription, Genetic , AT-Hook Motifs , Amino Acid Sequence , Animals , Binding Sites , Cell Survival/genetics , Chromatin/metabolism , DNA/metabolism , HEK293 Cells , Humans , Mice , Mouse Embryonic Stem Cells/metabolism , Mutation/genetics , Polycomb Repressive Complex 1/chemistry , Polycomb Repressive Complex 1/metabolism , Polycomb-Group Proteins , Protein Binding , Protein Stability , Protein Subunits/metabolism
10.
J Org Chem ; 84(15): 9714-9725, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31298854

ABSTRACT

The formation of cyclobutane rings is a promising strategy in the development of potential drugs and/or synthetic intermediates, typically challenging to obtain due to their constrained nature. In this work, the [2 + 2] photocycloaddition reaction of S,S-dioxobenzothiophene-2-methanol was explored in microcrystalline powders and its outcome was compared to that observed in solution. It was found that the molecular constraints inherited within the crystal lattice provide an optimal environment that leads to photodimer 4 as the major product in ca. 9.6:0.4 diastereomeric ratios with conversions >95%. The photoreaction was analyzed via X-ray, displaying a crystalline-to-amorphous transformation and showing that units of monomer 2 align to generate the corresponding dimer with a syn-head-to-tail regio- and diastereoselectivity. This result contrasted with that obtained in solution, where the diastereomeric ratio varied as a function of the excited state that is generated, to yield mixtures of dimers 4 and 5 (anti-head-to-tail), or exclusively 5 in the triplet-sensitized photoreaction, in the presence of benzophenone. Density functional theory was used to elucidate a plausible detailed mechanism for the phototransformation, which aided in justifying the results that led to the corresponding dimers. X-ray crystallography allowed us to establish the stereochemical assignment of the obtained cyclobutyl rings. Thus, the use of solid-state or solution photochemistry can be used to gain control of diastereo- and regioselectivities in the formation of this important moiety.

11.
Nanoscale ; 10(30): 14586-14593, 2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30027984

ABSTRACT

Chiral nanostructures have been attracting extensive interest in recent years primarily because of the unique materials properties that can be exploited for diverse applications. In this study, gold Janus nanoparticles, with hexanethiolates and 3-mercapto-1,2-propanediol segregated on the two hemispheres of the metal cores (dia. 2.7 ± 0.4 nm), self-assembled into vesicle-like, hollow nanostructures in both water and organic media, and exhibited apparent plasmonic circular dichroism (PCD) absorption in the visible range. This was in contrast to individual Janus nanoparticles, bulk-exchange nanoparticles where the two ligands were homogeneously mixed on the nanoparticle surface, or nanoparticles capped with only one kind of ligand. The PCD signals were found to become intensified with increasing coverage of the 3-mercapto-1,2-propanediol ligands on the nanoparticle surface. This was accounted for by the dipolar property of the structurally asymmetrical Janus nanoparticles, and theoretical simulations based on first principles calculations showed that when the nanoparticle dipoles self-assembled onto the surface of a hollow sphere, a vertex was formed which gave rise to the unique chiral characteristics. The resulting chiral nanoparticle vesicles could be exploited for the separation of optical enantiomers, as manifested in the selective identification and separation of d-alanine from the l-isomer.

12.
Angew Chem Int Ed Engl ; 57(22): 6624-6628, 2018 05 28.
Article in English | MEDLINE | ID: mdl-29660223

ABSTRACT

A strategy for the direct functionalization strategy of inertial dialkyl phosphonates with hydroxy compounds to afford diverse mixed phosphonates with good yields and functional-group tolerance has been developed. Mechanistic investigations involving both NMR studies and DFT studies suggest that an unprecedented highly reactive PV species (phosphoryl pyridin-1-ium salt), a key intermediate for this new synthetic transformation, is generated in situ from dialkyl phosphonate in the presence of Tf2 O/pyridine.

13.
Phys Chem Chem Phys ; 20(4): 2571-2584, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29318238

ABSTRACT

Four types of density functional theory (DFT)-based approaches are assessed in this work for the approximate construction of diabatic states and the evaluation of electronic couplings between these states. These approaches include the constrained DFT (CDFT) method, the constrained noninteracting electron (CNE) model to post-process Kohn-Sham operators, the approximate block-diagonalization (BD) of the Kohn-Sham operators, and the generalized Mulliken-Hush method. It is shown that the first three approaches provide a good description for long-distance intermolecular electron transfer (ET) reactions. On the other hand, inconsistent results were found when applying these approaches to intramolecular ET in strongly coupled, mixed-valence systems. Model analysis shows that this discrepancy is caused by the inappropriate use of the two-state model rather than the defects of the approaches themselves. The situation is much improved when more states are included in the model electronic Hamiltonian. The CNE and BD approaches can thus serve as efficient and robust alternatives for building ET models based on DFT calculations.

14.
J Phys Chem Lett ; 6(10): 1925-9, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26263271

ABSTRACT

The electronic coupling for singlet fission, an important parameter for determining the rate, has been found to be too small unless charge-transfer (CT) components were introduced in the diabatic states, mostly through perturbation or a model Hamiltonian. In the present work, the fragment spin difference (FSD) scheme was generalized to calculate the singlet fission coupling. The largest coupling strength obtained was 14.8 meV for two pentacenes in a crystal structure, or 33.7 meV for a transition-state structure, which yielded a singlet fission lifetime of 239 or 37 fs, generally consistent with experimental results (80 fs). Test results with other polyacene molecules are similar. We found that the charge on one fragment in the S1 diabatic state correlates well with FSD coupling, indicating the importance of the CT component. The FSD approach is a useful first-principle method for singlet fission coupling, without the need to include the CT component explicitly.

15.
J Chem Phys ; 139(15): 154104, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24160497

ABSTRACT

The electron transfer (ET) rate prediction requires the electronic coupling values. The Generalized Mulliken-Hush (GMH) and Fragment Charge Difference (FCD) schemes have been useful approaches to calculate ET coupling from an excited state calculation. In their typical form, both methods use two eigenstates in forming the target charge-localized diabatic states. For problems involve three or four states, a direct generalization is possible, but it is necessary to pick and assign the locally excited or charge-transfer states involved. In this work, we generalize the 3-state scheme for a multi-state FCD without the need of manual pick or assignment for the states. In this scheme, the diabatic states are obtained separately in the charge-transfer or neutral excited subspaces, defined by their eigenvalues in the fragment charge-difference matrix. In each subspace, the Hamiltonians are diagonalized, and there exist off-diagonal Hamiltonian matrix elements between different subspaces, particularly the charge-transfer and neutral excited diabatic states. The ET coupling values are obtained as the corresponding off-diagonal Hamiltonian matrix elements. A similar multi-state GMH scheme can also be developed. We test the new multi-state schemes for the performance in systems that have been studied using more than two states with FCD or GMH. We found that the multi-state approach yields much better charge-localized states in these systems. We further test for the dependence on the number of state included in the calculation of ET couplings. The final coupling values are converged when the number of state included is increased. In one system where experimental value is available, the multi-state FCD coupling value agrees better with the previous experimental result. We found that the multi-state GMH and FCD are useful when the original two-state approach fails.

16.
J Chem Phys ; 124(24): 244507, 2006 Jun 28.
Article in English | MEDLINE | ID: mdl-16821989

ABSTRACT

The dynamical correlation effect in electron transfer (ET) coupling was studied in this work, for cases where electrons tunnel through a many-electron environment. The ET couplings for three different bridge-mediated model systems were calculated: (I) trans-alkyl chains [H2C-(CH2)n-CH2, n = 2-10], (II) two isomers of trans-1,4-dimethylenecyclohexane, and (III) two ethylenes spaced by a saturated ethane molecule. The couplings were calculated as half energy gaps of the two lowest adiabatic states. The dynamical correlation was included with spin-flip (SF) and ionization potential or electron affinity coupled-cluster singles and doubles (SF-CCSD and IP/EA-CCSD) and a DeltaCCSD scheme. The direct coupling (DC) scheme is also used as a way to obtain a solution with nondynamical correlation, since DC uses approximated eigenstates that are symmetry-restoring linear combinations of two symmetry-broken unrestricted Hartree-Fock configurations. For all cases tested except for one, results from the DC scheme closely follow the CCSD data, indicating that the dual-configuration solutions can be a good approximation of wave functions with nondynamical correlation included, but there exist exceptions. Comparing the DC results with SF-CCSD and IP or EA-CCSD data, we concluded that the dynamical correlation effect is small for most of the cases we tested.

SELECTION OF CITATIONS
SEARCH DETAIL
...