Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Eco Environ Health ; 3(2): 247-255, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38708006

ABSTRACT

Introducing a magnetic-field gradient into an electrically driven chemical reaction is expected to give rise to intriguing research possibilities. In this work, we elaborate on the modes and mechanisms of electrocatalytic activity (from the perspective of alignment of magnetic moments) and selectivity (at the molecular level) for the CO2 reduction reaction in response to external magnetic fields. We establish a positive correlation between magnetic field strengths and apparent current densities. This correlation can be rationalized by the formation of longer-range ordering of magnetic moments and the resulting decrease in the scattering of conduction electrons and charge-transfer resistances as the field strength increases. Furthermore, aided by the magnetic-field-equipped operando infrared spectroscopy, we find that applied magnetic fields are capable of weakening the C-O bond strength of the key intermediate ∗COOH and elongating the C-O bond length, thereby increasing the faradaic efficiency for the electroreduction of CO2 to CO.

2.
RSC Adv ; 14(14): 9968-9974, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38533098

ABSTRACT

The solvent deasphalting (SDA) process is widely recognized as a significant technology in processing inferior oil. However, de-oiled asphaltene (DOA), which accounts for about 30% of feedstocks, is not well utilized in conventional processing methods to date. Considering its complicated structure and high heteroatom and metal contents, DOA is suitable for preparing amorphous carbon. Herein, we obtained amorphous carbon from inferior de-oiled asphaltene through direct carbonization of a mixture of DOA and Fe2O3 and revealed the mechanism of iron oxide in retarding graphitization to increase the disordered structure content. After the addition of Fe2O3, XRD results showed that the content of amorphous carbon increased from 25.57% to 59.48%, and a higher defect degree could also be observed in Raman spectra, thus resulting in better electrochemical performance in Na-ion half-cells. As a coke core, Fe2O3 could accelerate the polycondensation of asphaltene molecules; meanwhile, oxygen species derived from Fe2O3 could capture excess H free radicals in the initial pyrolysis stage, which inhibited the formation of planar polycyclic aromatic molecules and weakened π-π interactions. Moreover, O atoms could embed into the carbon skeleton by reacting with DOA at higher temperatures, which could further twist and break the intact carbon layer. Both of the factors enhanced the proportion of amorphous carbon. This work not only provides a new understanding of controlling the carbonization process, but it also promotes the development of the SDA process.

3.
ACS Omega ; 8(44): 41182-41193, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37970013

ABSTRACT

Hydrodesulfurization (HDS) is an important process for the production of clean fuel oil, and the development of a new environmentally friendly, low-cost sulfided catalyst is key research in hydrogenation technology. Herein, commercial bulk MoS2 and NiCO3·2NiOH2·4H2O were first hydrothermally treated and then calcined in a H2 or N2 atmosphere to obtain Ni-MoS2 HDS catalysts with different structures. Mechanisms of hydrothermal treatment and calcination on Ni-MoS2 catalyst structures were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS). The catalytic performance of Ni-MoS2 catalysts was evaluated by the HDS reaction of dibenzothiophene (DBT) on a fixed bed reactor, and the structure-activity relationship between the structures of the Ni-MoS2 catalyst and the HDS of DBT was discussed. The results showed that the lateral size, the number of stacked layers, and the S/Mo atomic ratio of MoS2 in the catalyst decreased and then increased with the increase of the hydrothermal treatment temperature, reaching the minimum at the hydrothermal treatment temperature of 150 °C, i.e., the lateral size of MoS2 in the catalyst was 20-36 nm, the number of stacked layers of MoS2 was 5.4, and the S/Mo ratio in the catalyst was 1.80. In addition, the effects of different calcination temperatures and calcination atmospheres on the catalyst structures were investigated at the optimum hydrothermal treatment temperature. The Ni-Mo-S and NixSy ratios of the catalysts increased and then decreased with the increasing calcination temperature under a H2 atmosphere, reaching a maximum at a calcination temperature of 400 °C. Therefore, DBT exhibited the best HDS activity over the H-NiMo-150-400 catalyst, and the desulfurization rate of DBT reached 94.7% at a reaction temperature of 320 °C.

4.
Angew Chem Int Ed Engl ; 61(18): e202201166, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35231132

ABSTRACT

Generally, in terms of electrocatalytic CO2 reduction, single-atom catalysts show high selectivities yet low current densities whereas conventional nanoparticle catalysts exhibit relatively high current densities but low selectivities. This work combines the advantages of the two classes of catalysts by constructing a Ni-Gd-N-doped carbon black electrocatalyst within which NiI active sites are exposed outside the carbon layers and Ni nanoparticles are encapsulated inside the carbon layers. The Gd atoms can not only influence the local electron densities of Ni 3d orbitals, thus strengthening the electronic activity, but also tailor the sizes of the Ni nanoparticles, thereby minimizing the activity toward hydrogen evolution. Accordingly, this electrocatalyst yields both a high CO faradaic efficiency (97 %) and a large current density (308 mA cm-2 ), alongside an outstanding stability (100 h).

6.
J Colloid Interface Sci ; 587: 290-301, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33360902

ABSTRACT

Clean energy conversion/storage techniques have become increasingly significant because of the increasing energy consumption. Regarding practical applications like zinc-air batteries and supercapacitors, electrode materials are essential and often require both porous networks and active species to enhance their electrochemical performance. Nitrogen-doped porous carbon (NPC) is a kind of promising material, which provides efficient active sites and large surface areas for energy conversion/storage applications. However, rational modulation of properties for maximizing NPC performance is still a challenge. Herein, a promising NPC material derived from natural biomass is successfully synthesized by following a stepwise preparation method. Physisorption and X-ray photoelectron spectroscopy (XPS) analyses demonstrate both pore structures and nitrogen species of the NPC have been delicately tuned. The optimized sample NPC-800-m exhibits excellent performance in both oxygen reduction reaction (ORR) and three-electrode supercapacitor measurement. Moreover, the homemade zinc-air battery and symmetric supercapacitor assembled with NPC-800-m also display outstanding energy and power density as well as durable stability. Density functional theory (DFT) calculations further confirm the synergistic effects among graphitic, pyridinic and pyrrolic nitrogen. The existence of multispecies of nitrogen combined with the optimized pore structure is the key to the high electrochemical performance for NPC-800-m. This work not only provides feasible and green synthetic methodology but also offers original insights into the effective pores and the synergistic effects of different nitrogen species in the NPC materials.

7.
J Colloid Interface Sci ; 575: 406-415, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32388287

ABSTRACT

Metal-free carbons as durable high-performance oxygen reduction electrocatalysts, deemed to be promising alternatives to the platinum-group metals (PGMs), are vital to large-scale commercialization of fuel cells. Herein, a solvent-free synthetic strategy has been proposed to prepare N-doped nanoporous metal-free carbonaceous materials originating from various types of plant residues (papaya skin - fruit, bamboo shoot - forestry, wheat straw - farming and cabbage stem - vegetable). The optimal metal-free carbon, possessing maximized reaction surface area and optimized distributions of nanopore structures and nitrogen species, can function as the durable high-performance pH-universal ORR electrocatalyst, reaching or surpassing the benchmark 20% Pt/C catalyst within the wide scope of pH. This paper substantiates the solvent-free, scalable and bio-universal preparation approach to converting various biomass wastes into durable high-performance pH-universal ORR carbonaceous catalysts, capable of expanding the repertoire of cathode catalysts employed by fuel cells that demand diverse pH environments.


Subject(s)
Carbon/chemistry , Nanoparticles/chemistry , Oxygen/chemistry , Catalysis , Hydrogen-Ion Concentration , Oxidation-Reduction , Particle Size , Porosity , Surface Properties
8.
RSC Adv ; 9(69): 40326-40335, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-35542656

ABSTRACT

Exploiting the natural structures of plants to prepare high-performance carbon-based electrocatalysts is highly desirable. Herein, the inherently hierarchical microstructures of Euphorbia tirucalli (E. tirucalli) are employed to construct three-dimensional nanoporous nitrogen-doped carbons that act as efficient and durable electrocatalysts towards the oxygen reduction reaction (ORR). During the preparation process, agar is used in order to reduce the dissipation of nitrogen and to protect the fine structures of E. tirucalli. The as-prepared ORR catalyst, with a high density of pyridinic and graphitic nitrogens, presents a high catalytic activity (onset potential of 0.97 V vs. RHE, half-wave potential of 0.82 V vs. RHE, limiting current density of 5.64 mA cm-2 and Tafel slope of 59 mV dec-1), four-electron pathway, low peroxide yield, long-term stability (current retention of 95.3% after 50 000 s) and strong methanol tolerance in 0.1 M KOH, all superior to the benchmark 20% Pt/C commercial catalyst. This work demonstrates an effective method for the utilization of inherently hierarchical microstructures of plant biomass to make efficient and durable carbon-based metal-free ORR electrocatalysts.

9.
Neuroreport ; 29(5): 417-425, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29432299

ABSTRACT

Major depressive disorder (MDD) is a highly prevalent and debilitating mental illness, which is associated with disorder of gut microbiota. However, few studies focusing on detection of the signatures of bacteria in feces of MDD patients using proteomics approach have been carried out. Here, a comparative metaproteomics analysis on the basis of an isobaric tag for relative and absolute quantification coupled with tandem mass spectrometry was carried out to explore the signature of gut microbiota in patients with MDD. Ten patients (age: 18-56 years, five women) who had MDD and a score over 20 on the Hamilton's Depression Scale and 10 healthy controls (age: 24-65 years, five women) group matched for sex, age, and BMI were enrolled. As a result, 279 significantly differentiated bacterial proteins (P<0.05) were detected and used for further bioinformatic analysis. According to phylogenetic analysis, statistically significant differences were observed for four phyla: Bacteroidetes, Proteobacteria, Firmicutes, Actinobacteria (P<0.05, for each). Abundances of 16 bacterial families were significantly different between the MDD and healthy controls (P<0.05). Furthermore, Cluster of Orthologous Groups analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that disordered metabolic pathways of bacterial proteins were mainly involved in glucose metabolism and amino acid metabolism. In conclusion, fecal microbiota signatures were altered significantly in MDD patients. Our findings provide a novel insight into the potential connection between gut microbiota and depression.


Subject(s)
Depressive Disorder, Major/microbiology , Feces/microbiology , Gastrointestinal Microbiome , Adolescent , Adult , Aged , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Female , Humans , Male , Middle Aged , Phylogeny , Proteomics , Young Adult
10.
Clin Exp Pharmacol Physiol ; 45(6): 525-535, 2018 06.
Article in English | MEDLINE | ID: mdl-29359338

ABSTRACT

Numerous studies have reported that inflammation is involved in the pathophysiology of depression. Pioglitazone, a PPAR-γ agonist, has potential anti-inflammatory and antidepressive effects. However, the underlying molecular mechanisms of the antidepressant-like effect of pioglitazone on an inflammation-related mouse model of depression remain to be fully elucidated. Herein, we aimed to explore the effects of pioglitazone on depressive-like behaviours of mice exposed to lipopolysaccharides (LPS), and elucidate the underlying mechanisms. We assessed behaviour changes of mice pretreated with pioglitazone exposed to LPS. Additionally, neural apoptosis, and the expression of apoptosis-related (cleaved caspase-3, Bax, Bcl-2, cyt c) and signalling proteins (AKT, JNK, p38) were assessed in the prefrontal cortex (PFC) of these mice. Furthermore, we assessed the influence of anisomycin, a JNK/p38 agonist, and LY294002, a PI3K/AKT inhibitor, on the antidepressant-like effect of pioglitazone in mice. We show that pioglitazone pretreatment (20 mg/kg, intragastrically) attenuated LPS-induced (10 ng/µL per site) depressive-like behaviours. GW9662, a PPAR-γ antagonist, significantly blocked the antidepressant-like effect of pioglitazone. Furthermore, at the molecular level, pioglitazone significantly reversed, via PPAR-γ-dependent increase in neural apoptosis in the PFC of mice, accompanied by upregulation of the PI3K/AKT pathway and down-regulation of the JNK/p38 pathway. Moreover, both anisomycin and LY294002 abrogated the antidepressant-like effect of pioglitazone.; In conclusion, our results showed that PI3K/AKT/JNK/p38 signalling pathway-mediated neural apoptosis in the PFC of mice may be involved in the antidepressant-like effect of pioglitazone. This provides novel insights into and therapeutic targets for inflammation-related depression.


Subject(s)
Antidepressive Agents/pharmacology , Apoptosis/drug effects , MAP Kinase Signaling System/drug effects , Pioglitazone/pharmacology , Prefrontal Cortex/drug effects , Anilides/pharmacology , Animals , Body Weight/drug effects , Gene Expression Regulation/drug effects , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Mice , Mice, Inbred C57BL , PPAR gamma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Prefrontal Cortex/pathology , Proto-Oncogene Proteins c-akt/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
11.
Mol Med Rep ; 17(1): 93-102, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29115597

ABSTRACT

Major depressive disorder is a severe neuropsychiatric disease that negatively impacts the quality of life of a large portion of the population. However, the molecular mechanisms underlying depression are still unclear. The pathogenesis of depression involves several brain regions. However, most previous studies have focused only on one specific brain region. Plasma and brain tissues exchange numerous components through the blood­brain barrier. Therefore, in the present study, plasma samples from control (CON) mice and mice subjected to chronic unpredictable mild stress (CUMS) were used to investigate the molecular pathogenesis of depression, and the association between the peripheral circulation and the central nervous system. A total of 47 significant differentially expressed proteins were identified between the CUMS and CON group by an isobaric tag for relative and absolute quantitation (iTRAQ) coupled with tandem mass spectrometry approach. These 47 differentially expressed proteins were analyzed with ingenuity pathway analysis (IPA) software. This revealed that the acute phase response, LXR/RXR and FXR/RXR activation, the complement system and the intrinsic prothrombin activation pathway were significantly changed. Four of the significant differentially expressed proteins (lipopolysaccharide binding protein, fibrinogen ß chain, α­1 antitrypsin, and complement factor H) were validated by western blotting. the present findings provide a novel insight into the molecular pathogenesis of depression.


Subject(s)
Depression/metabolism , Liver X Receptors/metabolism , Proteome , Proteomics , Stress, Psychological , Animals , Blood Proteins/metabolism , Chromatography, Liquid , Disease Models, Animal , Mice , Protein Interaction Mapping , Protein Interaction Maps , Proteomics/methods , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...