Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 13(3)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35893455

ABSTRACT

The development of multifunction nanoplatforms integrating accurate diagnosis and efficient therapy is of great significance for the precise treatment of tumors. Gold nanoparticles (AuNPs) possessing hallmark features of computed tomography (CT) imaging and photothermal conversion capability hold great potential in tumor theranostics. In this study, taking the advantages of outstanding biocompatibility, interesting anti-inflammatory and immunomodulatory properties, and abundant amino acid residues of silk fibroin (SF), a multifunctional Gd-hybridized AuNP nanoplatform was constructed using SF as a stabilizer and reductant via a facile one-pot biomimetic method, denoted as Gd:AuNPs@SF. The obtained Gd:AuNPs@SF possessed fascinating biocompatibility and excellent photothermal conversion efficiency. Functionalized with Gd, Gd:AuNPs@SF exhibited super tumor-contrasted imaging performance in magnetic resonance (MR) and CT imaging modalities. Moreover, Gd:AuNPs@SF, with strong NIR absorbance, demonstrated that it could effectively kill tumor cells in vitro, and was also proved to successfully ablate tumor tissues through MR/CT imaging-guided photothermal therapy (PTT) without systemic toxicity in Pan02 xenograft C57BL/6 mouse models. We successfully synthesized Gd:AuNPs@SF for MR/CT dual-mode imaging-guided PTT via a facile one-pot biomimetic method, and this biomimetic strategy can also be used for the construction of other multifunction nanoplatforms, which is promising for precise tumor theranostics.

2.
Biomater Sci ; 9(11): 3968-3978, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-33666216

ABSTRACT

Nanoparticle-mediated photothermal therapy (PTT) has shown promising capability for tumor therapy through the high local temperature at the tumor site generated by a photothermal agent (PTA) under visible or near-infrared (NIR) irradiation. Improving the accumulation of PTA at the tumor site is crucial to achieving effective photothermal treatment. Here, we developed temperature-activatable engineered neutrophils (Ne) by combining indocyanine green (ICG)-loaded magnetic silica NIR-sensitive nanoparticles (NSNP), which provide the potential for dual-targeted photothermal therapy. The combined effect of neutrophil targeting and magnetic targeting increased the accumulation of PTA at the tumor site. According to magnetic resonance imaging (MRI), the retention of intravenous injected NSNP-incorporated neutrophils within the tumor site was markedly augmented as compared to free NSNP. Furthermore, when irradiated by NIR, NSNP could cause a high local temperature at the tumor site and the thermal stimulation of neutrophils. The heat can kill tumor cells directly, and also lead to the death of neutrophils, upon which active substances with tumor-killing efficacy will be released to kill residual tumor cells and thus reduce tumor recurrence. Thereby, our therapy achieved the elimination of malignancy in the mouse model of the pancreatic tumor without recurrence. Given that all materials used in this system have been approved for use in humans, the transition of this treatment method to clinical application is plausible.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Iron , Magnetic Resonance Imaging , Neutrophils , Phototherapy , Photothermal Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...