Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 217(2): 745-762, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29269425

ABSTRACT

Numb functions as an oncosuppressor by inhibiting Notch signaling and stabilizing p53. This latter effect depends on the interaction of Numb with Mdm2, the E3 ligase that ubiquitinates p53 and commits it to degradation. In breast cancer (BC), loss of Numb results in a reduction of p53-mediated responses including sensitivity to genotoxic drugs and maintenance of homeostasis in the stem cell compartment. In this study, we show that the Numb-Mdm2 interaction represents a fuzzy complex mediated by a short Numb sequence encompassing its alternatively spliced exon 3 (Ex3), which is necessary and sufficient to inhibit Mdm2 and prevent p53 degradation. Alterations in the Numb splicing pattern are critical in BC as shown by increased chemoresistance of tumors displaying reduced levels of Ex3-containing isoforms, an effect that could be mechanistically linked to diminished p53 levels. A reduced level of Ex3-less Numb isoforms independently predicts poor outcome in BCs harboring wild-type p53. Thus, we have uncovered an important mechanism of chemoresistance and progression in p53-competent BCs.


Subject(s)
Breast Neoplasms/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Alternative Splicing , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Tumor Suppressor Protein p53/metabolism
2.
Biochemistry ; 54(47): 6983-95, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26561008

ABSTRACT

The tight complexes FKBP12 forms with immunosuppressive drugs, such as FK506 and rapamycin, are frequently used as models for developing approaches to structure-based drug design. Although the interfaces between FKBP12 and these ligands are well-defined structurally and are almost identical in the X-ray crystallographic structures of various complexes, our nuclear magnetic resonance studies have revealed the existence of substantial large-amplitude motions in the FKBP12-ligand interfaces that depend on the nature of the ligand. We have monitored these motions by measuring the rates of Tyr and Phe aromatic ring flips, and hydroxyl proton exchange for residues clustered within the FKBP12-ligand interface. The results show that the rates of hydroxyl proton exchange and ring flipping for Tyr26 are much slower in the FK506 complex than in the rapamycin complex, whereas the rates of ring flipping for Phe48 and Phe99 are significantly faster in the FK506 complex than in the rapamycin complex. The apparent rate differences observed for the interfacial aromatic residues in the two complexes confirm that these dynamic processes occur without ligand dissociation. We tentatively attribute the differential interface dynamics for these complexes to a single hydrogen bond between the ζ-hydrogen of Phe46 and the C32 carbonyl oxygen of rapamycin, which is not present in the KF506 complex. This newly identified Phe46 ζ-hydrogen bond in the rapamycin complex imposes motional restriction on the surrounding hydrophobic cluster and subsequently regulates the dynamics within the protein-ligand interface. Such information concerning large-amplitude dynamics at drug-target interfaces has the potential to provide novel clues for drug design.


Subject(s)
Immunosuppressive Agents/metabolism , Sirolimus/metabolism , Tacrolimus Binding Protein 1A/metabolism , Tacrolimus/metabolism , Humans , Hydrogen Bonding , Immunosuppressive Agents/chemistry , Ligands , Models, Molecular , Motion , Protein Binding , Protein Conformation , Sirolimus/chemistry , Tacrolimus/chemistry , Tacrolimus Binding Protein 1A/chemistry , Thermodynamics
3.
J Magn Reson ; 241: 148-54, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24656087

ABSTRACT

Polar side-chains in proteins play important roles in forming and maintaining three-dimensional structures, and thus participate in various biological functions. Until recently, most protein NMR studies have focused on the non-exchangeable protons of amino acid residues. The exchangeable protons attached to polar groups, such as hydroxyl (OH), sulfhydryl (SH), and amino (NH2) groups, have mostly been ignored, because in many cases these hydrogen atoms exchange too quickly with water protons, making NMR observations impractical. However, in certain environments, such as deep within the hydrophobic interior of a protein, or in a strong hydrogen bond to other polar groups or interacting ligands, the protons attached to polar groups may exhibit slow hydrogen exchange rates and thus become NMR accessible. To explore the structural and biological implications of the interactions involving polar side-chains, we have developed versatile NMR methods to detect such cases by observing the line shapes of (13)C NMR signals near the polar groups, which are affected by deuterium-proton isotope shifts in a mixture of H2O and D2O. These methods allow the detection of polar side-chains with slow hydrogen-deuterium exchange rates, and therefore provide opportunities to retrieve information about the polar side-chains, which might otherwise be overlooked by conventional NMR experiments. Future prospects of applications using deuterium-proton isotope shifts to retrieve missing structural and dynamic information of proteins are discussed.


Subject(s)
Hydrogen Bonding , Proteins/chemistry , Carbon Isotopes , Deuterium , Deuterium Exchange Measurement , Deuterium Oxide , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protons
4.
Biomol NMR Assign ; 4(2): 191-3, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20556552

ABSTRACT

A new tumor-specific target, termed C35 (C17orf37), has been identified by representational difference analysis of tumor and normal human mammary cell lines. C35 protein is considered to be an important target for cancer therapy, since the over expression of C35 functionally enhances migration and invasion of tumor cells. Here we report the NMR resonance assignments of C35 protein for further structural determination and functional studies.


Subject(s)
Biomarkers, Tumor/chemistry , Neoplasm Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Humans , Hydrogen-Ion Concentration , Intracellular Signaling Peptides and Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...