Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Pharmacol ; 68: 115-39, 2013.
Article in English | MEDLINE | ID: mdl-24054142

ABSTRACT

Work from our laboratory has established that angiotensin II (Ang II) produces a greater enhancement of the nerve stimulation (NS)-induced release (overflow) of both norepinephrine (NE) and neuropeptide Y (NPY) and a greater increase in perfusion pressure of the mesenteric arterial bed obtained from the spontaneously hypertensive rat (SHR) compared to age-matched Wistar-Kyoto (WKY) or Sprague-Dawley rats. The enhancement of NS-induced NPY release was blocked by the AT1 receptor antagonist EMD 66684 and the AT2 receptor antagonist PD 123319. Both captopril and EMD 66684 decreased NPY and NE overflow from SHR mesenteric beds, suggesting an endogenous renin-angiotensin system (RAS) is active in the mesenteric artery. We also observed that the recently discovered new arm of the RAS, namely, angiotensin (1-7) (Ang-(1-7)), attenuated the NS-induced increase in NE and NPY release and the accompanied increased perfusion pressure. These inhibitory effects were greater in blood vessels obtained from SHR compared to WKY. We suggest that inhibition of sympathetic neurotransmission contributes to the mechanism(s) by which Ang-(1-7) acts to inhibit the vasoconstrictor effect of Ang II. Administration of the MAS receptor antagonist D-Ala(7)Ang-(1-7) attenuated the decrease in both NE and NPY release due to Ang-(1-7) administration. The AT2 receptor antagonist PD 123391 attenuated the effect of Ang-(1-7) on NE release without affecting the decrease in NPY release. We observed a shift in the balance between Ang II and Ang-(1-7) levels in the SHR with an increase in Ang II and a decrease in Ang-(1-7) in the blood and mesenteric artery. This appears to be due to an increase in angiotensin-converting enzyme (ACE) in the mesenteric artery of the SHR.


Subject(s)
Angiotensin II/physiology , Angiotensin I/physiology , Catecholamines/physiology , Neuroeffector Junction/physiology , Neuropeptide Y/physiology , Peptide Fragments/physiology , Animals , Humans , Hypertension/physiopathology , Sympathetic Nervous System/physiopathology
2.
J Cardiovasc Pharmacol ; 47(6): 723-8, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16810071

ABSTRACT

The effect of neuropeptide Y (NPY) on the basal and nerve stimulation-induced increase in norepinephrine synthesis was studied in the isolated and perfused mesenteric arterial bed of the rat. Tyrosine hydroxylation, the rate-limiting step in catecholamine (CA) biosynthesis, was assessed by measuring the accumulation of DOPA in the perfusate/superfusate overflow after perfusion of the mesenteric arterial bed with the decarboxylase inhibitor m-hydroxybenzyl hydralazine (NSD-1015). Treatment with NDS-1015 resulted in a time-dependent increase in DOPA production and nerve stimulation (8 Hz, supramaximal voltage, 2 ms duration) increased DOPA production even further. NPY 1 to 100 nM was observed to produce a concentration-dependent attenuation in both the basal and nerve stimulation-induced increase in DOPA formation. To come to an understanding of the NPY receptor subtype mediating the inhibition of CA synthesis, the rank order of potency of a series of NPY analogs with varying selectivity for NPY receptor subtypes including intestinal polypeptide (PYY), PYY 13-36, Leu36 Pro34 NPY, human pancreatic polypeptide (h-PP), and rat pancreatic polypeptide (r-PP) were determined. In addition, the effect of various selective NPY antagonists on the inhibitory effect of NPY was also examined. These included the Y1 antagonist BIB03304, the Y2 antagonist BIIE0246, and the Y5 antagonist CGP71683. The IC50's for NPY, PYY, PYY13-36, Leu31 Pro34 NPY, and hPP in inhibiting CA synthesis were 5, 7, 15, 30, and 33 nM respectively. rPP failed to inhibit CA synthesis. All 3 of the NPY antagonists produced attenuation of the NPY-induced inhibition of CA synthesis, but it took a combination of all 3 to completely block the effect of a maximal inhibitory concentration of NPY. These results demonstrate that NPY inhibits CA synthesis in the perfused mesenteric arterial bed and can do so by activation of a variety of receptors including the Y1, Y2, and Y5.


Subject(s)
Catecholamines/antagonists & inhibitors , Mesenteric Arteries/drug effects , Neuropeptide Y/pharmacology , Receptors, Neuropeptide Y/metabolism , Animals , Aromatic Amino Acid Decarboxylase Inhibitors , Catecholamines/biosynthesis , Dihydroxyphenylalanine/metabolism , Dose-Response Relationship, Drug , Electric Stimulation , Hydrazines/pharmacology , Hydroxylation , In Vitro Techniques , Male , Mesenteric Arteries/innervation , Mesenteric Arteries/metabolism , Neuropeptide Y/analogs & derivatives , Neuropeptide Y/antagonists & inhibitors , Rats , Rats, Sprague-Dawley , Tyrosine/metabolism
3.
Peptides ; 26(12): 2603-9, 2005 Dec.
Article in English | MEDLINE | ID: mdl-15992963

ABSTRACT

Chronic cold stress of rats (4 degrees C; 1-3 weeks) induced a marked increase in gene expression (adrenal medulla; superior cervical ganglia), tissue content (mesenteric arterial bed) and nerve stimulation-induced overflow of NPY-immunoreactivity (NPYir) from the perfused mesenteric arterial bed. In contrast increased NPY neurotransmission was offset by an apparent decrease in the evoked overflow of norepinephrine (NE) due to a presumed deactivation of NE by nitric oxide (NO), despite increased sympathetic nerve activity. The net effect of these offsetting system was no change in basal or the evoked increase in perfusion pressure (sympathetic tone). It is concluded that differences in NPY and NE transmission act as an important compensatory mechanism preventing dramatic changes in arterial pressure when sympathetic nerve activity is high during cold stress.


Subject(s)
Adaptation, Physiological , Cold Temperature , Neuropeptide Y/biosynthesis , Stress, Physiological/metabolism , Sympathetic Nervous System/metabolism , Synaptic Transmission , Animals , Evoked Potentials , Male , Mesenteric Arteries/innervation , Mesenteric Arteries/metabolism , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...