Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Eur J Med Chem ; 277: 116752, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39133975

ABSTRACT

USP7 is one of the most studied deubiquitinating enzymes, which is involved in the regulation of multiple cell signaling pathways and has been shown to be associated with the occurrence and progression of a variety of cancers. Inhibitors targeting USP7 have been studied by several teams, but most of them lack selectivity and have low activities. Herein, we reported a serious of pyrrole[2,3-d]pyrimidin-4-one derivatives through scaffold hopping of recently reported 4-hydroxypiperidine compounds. The representative compound Z33 (YCH3124) exhibited highly potent USP7 inhibition activity as well as anti-proliferative activity against four kinds of cancer cell lines. Further study revealed that YCH3124 effectively inhibited the downstream USP7 pathway and resulted in the accumulation of both p53 and p21 in a dose-dependent manner. Notably, YCH3124 disrupted cell cycle progression through restricting G1 phase and induced significant apoptosis in CHP-212 cells. In summary, our efforts provided a series of novel pyrrole[2,3-d]pyrimidin-4-one analogs as potent USP7 inhibitors with excellent anti-cancer activity.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Pyrimidines , Pyrroles , Ubiquitin-Specific Peptidase 7 , Humans , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Ubiquitin-Specific Peptidase 7/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Pyrroles/pharmacology , Pyrroles/chemistry , Pyrroles/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Cell Line, Tumor , Molecular Structure , Dose-Response Relationship, Drug , Apoptosis/drug effects , Drug Discovery , Pyrimidinones/pharmacology , Pyrimidinones/chemistry , Pyrimidinones/chemical synthesis , Cell Cycle/drug effects
2.
Stat Med ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189687

ABSTRACT

Mild cognitive impairment (MCI) is a prodromal stage of Alzheimer's disease (AD) that causes a significant burden in caregiving and medical costs. Clinically, the diagnosis of MCI is determined by the impairment statuses of five cognitive domains. If one of these cognitive domains is impaired, the patient is diagnosed with MCI, and if two out of the five domains are impaired, the patient is diagnosed with AD. In medical records, most of the time, the diagnosis of MCI/AD is given, but not the statuses of the five domains. We may treat the domain statuses as missing variables. This diagnostic procedure relates MCI/AD status modeling to multiple-instance learning, where each domain resembles an instance. However, traditional multiple-instance learning assumes common predictors among instances, but in our case, each domain is associated with different predictors. In this article, we generalized the multiple-instance logistic regression to accommodate the heterogeneity in predictors among different instances. The proposed model is dubbed heterogeneous-instance logistic regression and is estimated via the expectation-maximization algorithm because of the presence of the missing variables. We also derived two variants of the proposed model for the MCI and AD diagnoses. The proposed model is validated in terms of its estimation accuracy, latent status prediction, and robustness via extensive simulation studies. Finally, we analyzed the National Alzheimer's Coordinating Center-Uniform Data Set using the proposed model and demonstrated its potential.

3.
Materials (Basel) ; 17(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893919

ABSTRACT

In the pursuit of global energy conservation and emissions reductions, utilizing beverage cans as energy-absorbing components offers potential for a sustainable economy. This study examines the impact of foam filling on the crushing behaviors and energy absorption of various types of beverage cans. Quasi-static compression tests were conducted on five geometrically sized cans filled with three densities of polyurethane foam to study their deformation modes and calculate crashworthiness parameters within the effective stroke. Results show that empty beverage cans have lower energy absorption capacities, and deformation modes become less consistent as can size increases. Higher foam density leads to increased total energy absorption, a slight reduction in the effective compression stroke, and a tendency for specific energy absorption to initially increase and then decrease. Regarding crush behavior, smaller cans transition from a diamond mode to a concertina mode, while larger cans exhibit a columnar bending mode. Next, the coupling effect of energy absorption between foam and cans was analyzed so as to reveal the design method of energy-absorbing components. The specific energy absorption of smaller cans filled with polyurethane foam is superior to that of similar empty cans. These findings provide valuable insights for selecting next-generation sustainable energy absorption structures.

4.
Pharmacol Res ; 204: 107203, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719196

ABSTRACT

Recent research has demonstrated the immunomodulatory potential of Panax notoginseng in the treatment of chronic inflammatory diseases and cerebral hemorrhage, suggesting its significance in clinical practice. Nevertheless, the complex immune activity of various components has hindered a comprehensive understanding of the immune-regulating properties of Panax notoginseng, impeding its broader utilization. This review evaluates the effect of Panax notoginseng to various types of white blood cells, elucidates the underlying mechanisms, and compares the immunomodulatory effects of different Panax notoginseng active fractions, aiming to provide the theory basis for future immunomodulatory investigation.


Subject(s)
Panax notoginseng , Panax notoginseng/chemistry , Humans , Animals , Immune System/drug effects , Leukocytes/drug effects , Leukocytes/immunology , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology
5.
Chem Commun (Camb) ; 60(36): 4830-4833, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38619085

ABSTRACT

gem-Difluoroalkenes are widely used building blocks in fluorine chemistry. Herein, a metal-free photocatalytic amination and heteroarylation method of gem-difluoroalkenes with heteroaryl carboxylic acid oxime esters as substrates is reported. This environmentally benign reaction proceeds via radical-radical cross-coupling in energy-transfer-mediated photocatalysis and can be used in the rapid construction of heteroaryl difluoroethylamine scaffolds and late-stage modification of complex pharmaceutical structures.

6.
J Am Stat Assoc ; 119(545): 259-272, 2024.
Article in English | MEDLINE | ID: mdl-38590837

ABSTRACT

The James-Stein estimator is an estimator of the multivariate normal mean and dominates the maximum likelihood estimator (MLE) under squared error loss. The original work inspired great interest in developing shrinkage estimators for a variety of problems. Nonetheless, research on shrinkage estimation for manifold-valued data is scarce. In this article, we propose shrinkage estimators for the parameters of the Log-Normal distribution defined on the manifold of N × N symmetric positive-definite matrices. For this manifold, we choose the Log-Euclidean metric as its Riemannian metric since it is easy to compute and has been widely used in a variety of applications. By using the Log-Euclidean distance in the loss function, we derive a shrinkage estimator in an analytic form and show that it is asymptotically optimal within a large class of estimators that includes the MLE, which is the sample Fréchet mean of the data. We demonstrate the performance of the proposed shrinkage estimator via several simulated data experiments. Additionally, we apply the shrinkage estimator to perform statistical inference in both diffusion and functional magnetic resonance imaging problems.

8.
PLoS One ; 19(3): e0299194, 2024.
Article in English | MEDLINE | ID: mdl-38442127

ABSTRACT

This paper theoretically analyzes and empirically examines the impact and mechanisms of automated machines on employment in manufacturing enterprises, drawing on task-based model and using micro data from listed Chinese manufacturing enterprises between 2012 and 2019. Our findings reveal that: (1) Automated machines in manufacturing enterprises leads to a substitution effect on the total labor force, with a substitution effect on low-skilled labor and a creation effect on high-skilled labor in terms of employment structure. (2) Further analysis indicates that automated machines primarily have a positive effect on R&D and technical staff, a non-significant effect on sales staff, and a negative impact on production, administrative, and financial staff. (3) The primary influencing mechanisms of automated machines on employment in manufacturing firms are productivity effects and output scale effects, based on the mediation effect model. (4) Considering the industry linkage effect, we employ the input-output method and the Input-Output Table and find that automated machines for upstream (downstream) manufacturing enterprises will result in a substitution effect on employment for downstream (upstream) enterprises. The novelties and research contributions are as follows: (1) we conduct a structural decomposition of total employment, and further decompose employment positions into production, R&D, sales, finance, and administration. (2) We try to investigate the industry linkage effect about the impact of automated machines on the employment of upstream and downstream enterprises. (3) We use data from listed manufacturing companies, and the data of existing research are about provincial and industry-level data.


Subject(s)
Commerce , Industry , Employment , China
9.
Biochem Pharmacol ; 222: 116071, 2024 04.
Article in English | MEDLINE | ID: mdl-38387527

ABSTRACT

Inhibition of the human ubiquitin-specific protease 7 (USP7), the key deubiquitylating enzyme in regulating p53 protein levels, has been considered an attractive anticancer strategy. In order to enhance the cellular activity of FT671, scaffold hopping strategy was employed. This endeavor resulted in the discovery of YCH2823, a novel and potent USP7 inhibitor.YCH2823 demonstrated remarkable efficacy in inhibiting the growth of a specific subset of TP53 wild-type, -mutant, and MYCN-amplified cell lines, surpassing the potency of FT671 by approximately 5-fold. The mechanism of action of YCH2823 involves direct interaction with the catalytic domain of USP7, thereby impeding the cleavage of ubiquitinated substrates. An increase in the expression of p53 and p21, accompanied by G1 phase arrest and apoptosis, was observed upon treatment with YCH2823. Subsequently, the knockdown of p53 or p21 in CHP-212 cells exhibited a substantial reduction in sensitivity to YCH2823, as evidenced by a considerable increase in IC50 values up to 690-fold. Furthermore, YCH2823 treatment specifically enhanced the transcriptional and protein levels of BCL6 in sensitive cells. Moreover, a synergistic effect between USP7 inhibitors and mTOR inhibitors was observed, suggesting the possibility of novel therapeutic strategies for cancer treatment. In conclusion, YCH2823 exhibits potential as an anticancer agent for the treatment of both TP53 wild-type and -mutant tumors.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Cell Line, Tumor , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Specific Peptidase 7/metabolism , Apoptosis , Neoplasms/drug therapy , Neoplasms/genetics
10.
J Trace Elem Med Biol ; 83: 127407, 2024 May.
Article in English | MEDLINE | ID: mdl-38325182

ABSTRACT

BACKGROUND: Generally, decreased zinc in the serum of tumor patients but increased zinc in tumor cells can be observed. However, the role of zinc homeostasis in myeloid leukemia remains elusive. BCR-ABL is essential for the initiation, maintenance, and progression of chronic myelocytic leukemia (CML). We are currently investigating the association between zinc homeostasis and CML. METHODS: Genes involved in zinc homeostasis were examined using three GEO datasets. Western blotting and qPCR were used to investigate the effects of zinc depletion on BCR-ABL expression. Furthermore, the effect of TPEN on BCR-ABL promoter activity was determined using the dual-luciferase reporter assay. MRNA stability and protein stability of BCR-ABL were assessed using actinomycin D and cycloheximide. RESULTS: Transcriptome data mining revealed that zinc homeostasis-related genes were associated with CML progression and drug resistance. Several zinc homeostasis genes were affected by TPEN. Additionally, we found that zinc depletion by TPEN decreased BCR-ABL mRNA stability and transcriptional activity in K562 CML cells. Zinc supplementation and sodium nitroprusside treatment reversed BCR-ABL downregulation by TPEN, suggesting zinc- and nitric oxide-dependent mechanisms. CONCLUSION: Our in vitro findings may help to understand the role of zinc homeostasis in BCR-ABL regulation and thus highlight the importance of zinc homeostasis in CML.


Subject(s)
Fusion Proteins, bcr-abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Apoptosis , Ethylenediamines/pharmacology , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Fusion Proteins, bcr-abl/pharmacology , Genes, abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Zinc/metabolism
11.
Eur J Med Chem ; 268: 116221, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38382392

ABSTRACT

The formation of biofilm is one of the important factors for bacteria to develop drug-resistant. A series of halogenated-pyrroles or pyrazoles containing thiazole groups as antibacterial agents were designed and synthesized to target biofilms. Among them, compound 8c showed antibacterial activity against various Gram-positive bacteria, particularly against vancomycin-resistant Enterococcus faecalis (MIC ≤0.125 µg/mL). Additionally, this compound significantly inhibited biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa at sub-MIC doses. Furthermore, compound 8c exhibited significantly lower mammalian cell toxicity compared to pyrrolomycin C and its hepatic microsomal metabolic stability in various species was also evaluated. Further experiment on the infection model of Galleria mellonella proved that the compound was effective in vivo.

12.
Org Lett ; 26(3): 713-718, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38214493

ABSTRACT

Sulfonamides are important structures in pharmaceuticals, agrochemicals, and organocatalysts, yet the rapid and benign synthesis of these compounds is still a great challenge. Herein we report a photoinduced method for synthesizing sulfonamides from (hetero)aryl carboxylic acid oxime esters. This reaction proceeds via one-pot cascade radical-radical cross-coupling by energy-transfer-mediated photocatalysis. A wide substrate scope including (hetero)aryl substrates and late-stage modification of pharmaceutical molecular entities reveal its generality.

13.
RSC Adv ; 14(5): 3158-3162, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38249667

ABSTRACT

A simple and efficient synthetic approach to 2-amino-9H-chromeno[2,3-d]thiazol-9-ones via copper-promoted cascade reactions was developed. The reaction employed easily available 2-amino-3-iodochromones and amines as substrates and the targeting tricyclic compounds could be obtained with moderate to good yields. Even more important, several synthesized compounds exhibited potent anti-inflammatory activities, which suggested that this protocol may provide valuable hits for drug development in the future.

14.
J Control Release ; 365: 1089-1123, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38065416

ABSTRACT

Extracellular vesicles are nanoscale vesicles that can be secreted by all cell types, are intracellular in origin and have the same composition as their parent cells, play a key role in intercellular communication in organismal health and disease, and are now often used as biomarkers of disease and therapeutic agents in biomedical research. When injected locally or systemically, they have the ability to provide a variety of therapeutic effects, for example, regeneration of skin damage or restoration of cardiac function. However, direct injection of extracellular vesicles may result in their rapid clearance from the injection site.In order to maintain the biological activity of extracellular vesicles and to control the release of effective concentrations for better therapeutic efficacy during long-term disease treatment, the design of an optimized drug delivery system is necessary and different systems for the continuous delivery of extracellular vesicles have been developed. This paper first provides an overview of the biogenesis, composition and physiological function of extracellular vesicles, followed by a review of different strategies for extracellular vesicle isolation and methods for engineering extracellular vesicles. In addition, this paper reviews the latest extracellular vesicle delivery platforms such as micro-nanoparticles, injectable hydrogels, microneedles and scaffold patches. At the same time, the research progress and key cases of extracellular vesicle delivery systems in the field of biomedical therapeutics are described. Finally, the challenges and future trends of extracellular vesicle delivery are discussed.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/metabolism , Drug Delivery Systems/methods , Biomarkers/metabolism , Biological Transport
15.
J Med Chem ; 66(17): 12284-12303, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37605459

ABSTRACT

Poly(ADP-ribose) polymerase inhibitors (PARPi) have significant efficacy in treating BRCA-deficient cancers, although resistance development remains an unsolved challenge. Herein, a series of phthalazin-1(2H)-one derivatives with excellent enzymatic inhibitory activity were designed and synthesized, and the structure-activity relationship was explored. Compared with olaparib and talazoparib, compound YCH1899 exhibited distinct antiproliferation activity against olaparib- and talazoparib-resistant cells, with IC50 values of 0.89 and 1.13 nM, respectively. Studies of the cellular mechanism revealed that YCH1899 retained sensitivity in drug-resistant cells with BRCA1/2 restoration or 53BP1 loss. Furthermore, YCH1899 had acceptable pharmacokinetic properties in rats and showed prominent dose-dependent antitumor activity in olaparib- and talazoparib-resistant cell-derived xenograft models. Overall, this study suggests that YCH1899 is a new-generation antiresistant PARPi that could provide a valuable direction for addressing drug resistance to existing PARPi drugs.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Humans , Animals , Rats , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
16.
J Trace Elem Med Biol ; 79: 127264, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37473591

ABSTRACT

BACKGROUND: Myeloid leukemia is associated with reduced serum zinc and increased intracellular zinc. Our previous studies found that zinc depletion by TPEN induced apoptosis with PML-RARα oncoprotein degradation in acute promyelocytic NB4 cells. The effect of zinc homeostasis on intracellular signaling pathways in myeloid leukemia cells remains unclear. OBJECTIVE: This study examined how zinc homeostasis affected MAPK and Akt/mTOR pathways in NB4 cells. METHODS: We used western blotting to detect the activation of p38 MAPK, JNK, ERK1/2, and Akt/mTOR pathways in NB4 cells stimulated with the zinc chelator TPEN. Whether the effects of TPEN on these pathways could be reversed by zinc or the nitric oxide donor sodium nitroprusside (SNP) was further explored by western blotting. We used Zinpyr-1 staining to assess the role of SNP on labile zinc levels in NB4 cells treated with TPEN. In additional, we evaluated expressional correlations between the zinc-binding protein Metallothionein-2A (MT2A) and genes related to MAPKs and Akt/mTOR pathways in acute myeloid leukemia (AML) based on the TCGA database. RESULTS: Zinc depletion by TPEN activated p38 and JNK phosphorylation in NB4 cells, whereas ERK1/2 phosphorylation was increased first and then decreased. The protein expression levels of Akt and mTOR were downregulated by TPEN. The nitric oxide donor SNP promotes zinc release in NB4 cells under zinc depletion conditions. We further found that the effects of zinc depletion on MAPK and Akt/mTOR pathways in NB4 cells can be reversed by exogenous zinc supplementation or treatment with the nitric oxide donor SNP. By bioinformatics analyses based on the TCGA database, we demonstrated that MT2A expression was negatively correlated with the expression of JNK, and was positively correlated with the expression of ERK1 and Akt in AML. CONCLUSION: Our findings indicate that zinc plays a critical role in leukemia cells and help understanding how zinc depletion induces apoptosis.


Subject(s)
Leukemia, Myeloid , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Nitric Oxide Donors/pharmacology , Phosphorylation , Zinc/pharmacology , Zinc/metabolism , Apoptosis , TOR Serine-Threonine Kinases/metabolism
17.
Sensors (Basel) ; 23(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37112158

ABSTRACT

Software-defined networking (SDN) is a new network architecture that provides programmable networks, more efficient network management, and centralized control than traditional networks. The TCP SYN flooding attack is one of the most aggressive network attacks that can seriously degrade network performance. This paper proposes detection and mitigation modules against SYN flooding attacks in SDN. We combine those modules, which have evolved from the cuckoo hashing method and innovative whitelist, to get better performance compared to current methods Our approach reduces the traffic through the switch and improves detection accuracy, also the required register size is reduced by half for the same accuracy.

18.
Metallomics ; 15(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-37061789

ABSTRACT

Zinc homeostasis is regulated by the SLC39A/ZIP, SLC30A/ZnT, and metallothionein (MT) protein families. The association of zinc homeostasis with acute myeloid leukemia (AML) is unclear. We previously demonstrated that zinc depletion by TPEN triggers apoptosis in NB4 AML cells with the degradation of PML-RARα oncoprotein, suggesting that zinc homeostasis may be associated with AML. The primary aim of this study was to explore the expression pattern and prognostic roles of zinc homeostasis-related genes in AML. Bioinformatics analyses were performed using integrated datasets from the TCGA and GTEx projects. The GEPIA tool was used to analyze the differential expression of zinc homeostasis-related genes. Correlations between zinc homeostasis-related genes were assessed with Spearman's correlation coefficient. OncoLnc was used to evaluate the prognostic roles of zinc homeostasis-related genes with Kaplan-Meier and Cox regression models. In both NB4 and U937 cells, the transcriptional regulation of zinc homeostasis-related genes by zinc depletion was detected through qPCR. We found that multiple ZIPs, ZnTs, and MTs were differentially expressed and correlated in AML tumors. In AML patients, higher expression of ZIP4 and lower expression of ZnT5 and ZnT7 predicted poorer survival. We further found that zinc depletion by TPEN upregulated ZIP7, ZIP9, ZIP10, ZIP13, and ZnT7 and downregulated ZIP14, ZnT1, ZnT6, and most of the positively expressed MTs in both NB4 and U937 AML cells. Our findings suggest high expression of ZIP4 and low expression of ZnT5 and ZnT7 as potential risk factors for the prognosis of AML. Zinc homeostasis may be a potential therapeutic target for AML, deserving further exploration.


Subject(s)
Cation Transport Proteins , Leukemia, Myeloid, Acute , Humans , Prognosis , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Zinc/metabolism , Endoplasmic Reticulum/metabolism , Leukemia, Myeloid, Acute/genetics , Homeostasis/genetics
19.
Signal Transduct Target Ther ; 8(1): 153, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37041169

ABSTRACT

Phosphatidylinositol 3-kinase alpha (PI3Kα) inhibitors are currently evaluated for the therapy of esophageal squamous cell carcinoma (ESCC). It is of great importance to identify potential biomarkers to predict or monitor the efficacy of PI3Kα inhibitors in an aim to improve the clinical responsive rate in ESCC. Here, ESCC PDXs with CCND1 amplification were found to be more sensitive to CYH33, a novel PI3Kα-selective inhibitor currently in clinical trials for the treatment of advanced solid tumors including ESCC. Elevated level of cyclin D1, p21 and Rb was found in CYH33-sensitive ESCC cells compared to those in resistant cells. CYH33 significantly arrested sensitive cells but not resistant cells at G1 phase, which was associated with accumulation of p21 and suppression of Rb phosphorylation by CDK4/6 and CDK2. Hypo-phosphorylation of Rb attenuated the transcriptional activation of SKP2 by E2F1, which in turn hindered SKP2-mediated degradation of p21 and reinforced accumulation of p21. Moreover, CDK4/6 inhibitors sensitized resistant ESCC cells and PDXs to CYH33. These findings provided mechanistic rationale to evaluate PI3Kα inhibitors in ESCC patients harboring amplified CCND1 and the combined regimen with CDK4/6 inhibitors in ESCC with proficient Rb.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/metabolism , Cell Proliferation , Phosphorylation , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism
20.
Cancers (Basel) ; 15(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36831437

ABSTRACT

Lithium, a trace element important for fetal health and development, is considered a metal drug with a well-established clinical regime, economical production process, and a mature storage system. Several studies have shown that lithium affects tumor development by regulating inositol monophosphate (IMPase) and glycogen synthase kinase-3 (GSK-3). Lithium can also promote proliferation and programmed cell death (PCD) in tumor cells through a number of new targets, such as the nuclear receptor NR4A1 and Hedgehog-Gli. Lithium may increase cancer treatment efficacy while reducing side effects, suggesting that it can be used as an adjunctive therapy. In this review, we summarize the effects of lithium on tumor progression and discuss the underlying mechanisms. Additionally, we discuss lithium's limitations in antitumor clinical applications, including its narrow therapeutic window and potential pro-cancer effects on the tumor immune system.

SELECTION OF CITATIONS
SEARCH DETAIL