Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
ACS Synth Biol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845097

ABSTRACT

Genome editing is the basis for the modification of engineered microbes. In the process of genome editing, the design of editing sequences, such as primers and sgRNA, is very important for the accurate positioning of editing sites and efficient sequence editing. The whole process of genome editing involves multiple rounds and types of editing sequence design, while the development of related whole-workflow design tools for high-throughput experimental requirements lags. Here, we propose AutoESDCas, an online tool for the end-to-end editing sequence design for microbial genome editing based on the CRISPR/Cas system. This tool facilitates all types of genetic manipulation covering diverse experimental requirements and design scenarios, enables biologists to quickly and efficiently obtain all editing sequences needed for the entire genome editing process, and empowers high-throughput strain modification. Notably, with its off-target risk assessment function for editing sequences, the usability of the design results is significantly improved. AutoESDCas is freely available at https://autoesdcas.biodesign.ac.cn/with the source code at https://github.com/tibbdc/AutoESDCas/.

2.
Synth Syst Biotechnol ; 9(4): 647-657, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38817827

ABSTRACT

Utilizing standardized artificial regulatory sequences to fine-tuning the expression of multiple metabolic pathways/genes is a key strategy in the creation of efficient microbial cell factories. However, when regulatory sequence expression strengths are characterized using only a few reporter genes, they may not be applicable across diverse genes. This introduces great uncertainty into the precise regulation of multiple genes at multiple expression levels. To address this, our study adopted a fluorescent protein fusion strategy for a more accurate assessment of target protein expression levels. We combined 41 commonly-used metabolic genes with 15 regulatory sequences, yielding an expression dataset encompassing 520 unique combinations. This dataset highlighted substantial variation in protein expression level under identical regulatory sequences, with relative expression levels ranging from 2.8 to 176-fold. It also demonstrated that improving the strength of regulatory sequences does not necessarily lead to significant improvements in the expression levels of target proteins. Utilizing this dataset, we have developed various machine learning models and discovered that the integration of promoter regions, ribosome binding sites, and coding sequences significantly improves the accuracy of predicting protein expression levels, with a Spearman correlation coefficient of 0.72, where the promoter sequence exerts a predominant influence. Our study aims not only to provide a detailed guide for fine-tuning gene expression in the metabolic engineering of Escherichia coli but also to deepen our understanding of the compatibility issues between regulatory sequences and target genes.

3.
Animals (Basel) ; 14(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731354

ABSTRACT

The objective of this study was to investigate age-related changes in cashmere production and the population of active secondary hair follicles in cashmere goats across different age groups as well as to explore the association between secondary hair follicle activity and oxidative stress. A total of 104 adult Inner Mongolian ewe goats, aged between 2 and 7 years old, were randomly selected as experimental subjects. Skin samples were collected in August 2020 and cashmere samples were collected in April 2021. The cashmere fiber yield, staple length, and diameter showed age-related variations in cashmere goats aged 2 to 7 years (p < 0.05). Cashmere production was higher in goats aged 2-4 years compared to those aged 5-7 years (p < 0.05). There were no significant differences in the population of primary and secondary hair follicles among goats aged 2 to 7 years. However, the population of active secondary hair follicles varied significantly with age, with the younger group (aged 2-4 years) having a higher population than those aged 5-7 years (p < 0.05). A moderate negative correlation was observed between cashmere fiber diameter and the population of active secondary hair follicles (p < 0.05). Age-related variations in skin antioxidant capacity and oxidative damage were observed among cashmere goats aged 2 to 7 years old (p < 0.05). Goats aged 2 to 4 years exhibited higher antioxidant capacity and lower oxidative damage (p < 0.05). Interestingly, the skin's antioxidant capacity and oxidative damage exhibited significant positive and negative correlations with the population of active secondary hair follicles (p < 0.05). This study presents a novel approach to enhance the activity of secondary hair follicles and improve cashmere production performance through the regulation of oxidative stress.

4.
Sci Total Environ ; 912: 168746, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38008329

ABSTRACT

A lot of drilling wastes are produced during oil/gas exploration and exploitation in China. Many countries have built and successfully run projects to dispose of wastes in salt mines, which fully demonstrates the feasibility and superiority of this technology. The application prospects of using salt mines to dispose of drilling wastes is comprehensively evaluated from many aspects. It is concluded that this technology has broad application prospects in China. The scientific and technical problems that need to be solved in order to successfully use this technology are systematically summarized, and some practical suggestions are put forward to improve relevant laws and policies. Considering the geological conditions of salt mines and the requirements of laws and regulations in China, a set of perfect and more advanced Chinese schemes has been proposed.

5.
Animals (Basel) ; 13(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003137

ABSTRACT

The objective of this study was to investigate the effects of fasted live-weight gain during the cashmere non-growing period on cashmere production performance and secondary hair follicle activity, to provide a theoretical basis for appropriate supplementary feeding of cashmere goats. Fifty Inner Mongolian cashmere goats aged 2-4 years old were randomly selected and weighed in May and September 2019, respectively. Based on fasted live-weight gain between the two weights, the experimental ewe goats were divided into two groups: 0-5.0 kg group (n = 30) and 5.0-10.0 kg group (n = 20). Skin samples and cashmere samples were collected. Results of a Pearson correlation analysis showed that fasted live-weight gain during the cashmere non-growing period had a moderate and strong positive correlation with cashmere yield (p = 0.021) and cashmere staple length (p = 0.002), respectively, but did not correlate with cashmere diameter (p = 0.254). Compared with cashmere goats with a fasted live-weight gain of 0-5.0 kg, cashmere goats with a fasted live-weight gain of 5.0-10.0 kg had a 17.10% increase in cashmere yield (p = 0.037) and an 8.09% increase in cashmere staple length (p = 0.045), but had no significant difference in cashmere diameter (p = 0.324). Results of a Pearson correlation analysis showed that there was a strong positive correlation between fasted live-weight gain and the population of active secondary hair follicles in the skin of cashmere goats (p < 0.01). Compared with cashmere goats with a fasted live-weight gain of 0-5.0 kg, cashmere goats with a fasted live-weight gain of 5.0-10.0 kg had an increase in the population of active secondary hair follicles (p < 0.05). In conclusion, the fasted live-weight gain during the cashmere non-growing period had a significant effect on secondary hair follicle activity and cashmere production performance in cashmere goats. Since fasted live-weight gain reflects nutritional level to a certain extent, this study suggests that nutritional manipulations such as supplementary feeding during cashmere non-growing periods can increase cashmere production performance. However, specific nutritional manipulations during the cashmere non-growing period need further research to increase cashmere production performance.

6.
Angew Chem Int Ed Engl ; 62(40): e202308367, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37581342

ABSTRACT

Fine-tuning the thermodynamic self-assembly of molecules via volatile solid additives has emerged to be an effective way to construct high-performance organic solar cells. Here, three-dimensional structured solid molecules have been designed and applied to facilitate the formation of organized molecular assembly in the active layer. By means of systematic theory analyses and film-morphology characterizations based on four solid candidates, we preselected the optimal one, 4-fluoro-N,N-diphenylaniline (FPA), which possesses good volatility and strong charge polarization. The three-dimensional solids can induce molecular packing in active layers via strong intermolecular interactions and subsequently provide sufficient space for the self-reassembly of active layers during the thermodynamic transition process. Benefitting from the optimized morphology with improved charge transport and reduced energy disorder in the FPA-processed devices, high efficiencies of over 19 % were achieved. The strategy of three-dimensional additives inducing ordered self-assembly structure represents a practical approach for rational morphology control in highly efficient devices, contributing to deeper insights into the structural design of efficient volatile solid additives.

7.
Nucleic Acids Res ; 51(W1): W70-W77, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37158271

ABSTRACT

Flux balance analysis (FBA) is an important method for calculating optimal pathways to produce industrially important chemicals in genome-scale metabolic models (GEMs). However, for biologists, the requirement of coding skills poses a significant obstacle to using FBA for pathway analysis and engineering target identification. Additionally, a time-consuming manual drawing process is often needed to illustrate the mass flow in an FBA-calculated pathway, making it challenging to detect errors or discover interesting metabolic features. To solve this problem, we developed CAVE, a cloud-based platform for the integrated calculation, visualization, examination and correction of metabolic pathways. CAVE can analyze and visualize pathways for over 100 published GEMs or user-uploaded GEMs, allowing for quicker examination and identification of special metabolic features in a particular GEM. Additionally, CAVE offers model modification functions, such as gene/reaction removal or addition, making it easy for users to correct errors found in pathway analysis and obtain more reliable pathways. With a focus on the design and analysis of optimal pathways for biochemicals, CAVE complements existing visualization tools based on manually drawn global maps and can be applied to a broader range of organisms for rational metabolic engineering. CAVE is available at https://cave.biodesign.ac.cn/.


Subject(s)
Cloud Computing , Data Visualization , Metabolic Networks and Pathways , Metabolomics , Genome , Metabolic Networks and Pathways/genetics , Models, Biological , Software , Metabolomics/instrumentation , Metabolomics/methods
8.
Opt Lett ; 47(11): 2722-2725, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35648914

ABSTRACT

A high color rendering index (CRI) and stable spectra under different voltages are important parameters for large-area planar light sources. However, the spectrum of most electroluminescent white light-emitting diodes (el-WLEDs) with a single emissive layer (EML) varies with a changing voltage. Herein, an el-WLED is fabricated based on Cd-free Cu-In-Zn-S (CIZS)/ZnS nanocrystals (NCs) and poly [(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(p-butylphenyl))diphenylamine)] (TFB) as double EMLs, which exhibit white-light emission with a high CRI value of 91 and commission internationale de l'éclairage (CIE) color coordinates of (0.33, 0.33). Meanwhile, it has a stable spectrum under voltage up to 7 V and a maximum luminance up to 679 cd/m2 with a low turn-on voltage of 2.2 V. This work provides a foundation for Cd-free el-WLEDs with high CRI and stable spectra.

9.
J Phys Chem Lett ; 13(22): 4856-4863, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35617309

ABSTRACT

Ternary Pb-free Cs-Cu-I perovskites have attracted widespread attention because of their excellent optical properties and environmentally friendly advantages. Herein, two different Pb-free ternary Cs3Cu2I5 nanocrystals (NCs) and CsCu2I3 microrods (MRs) were synthesized via a heating method. The phase and morphology transition from blue emission of Cs3Cu2I5 NCs to yellow emission of CsCu2I3 MRs could be tuned effectively by manipulating the reaction temperature, decreasing the maximum photoluminescence quantum yields (PLQYs) from 82.7% to ∼10%. More interestingly, the Cs3Cu2I5 NCs could self-assemble into stacking chains, which exhibited a strong dependence on the polarity of solvents. In addition, it was demonstrated that the rapid phase transition and luminescence tuning between Cs3Cu2I5 and CsCu2I3 films took only a few seconds by direct heating or exposure to the polar solvent. This work may deepen the understanding of the phase transition process in Cu-based perovskites and provide a fluorescence material with a short switching time for anticounterfeiting applications.

10.
Theriogenology ; 186: 168-174, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35487118

ABSTRACT

The mammalian epididymis provides an optimal and antioxidative fluid microenvironment for post-testicular sperm maturation by secretion of antioxidant scavengers and removal of excessive ROS. MicroRNAs (miRNAs) are expressed in the epididymis and involved in the regulation of epididymis physiology and functions. However, whether miRNAs are involved in regulating the antioxidant capacity and oxidative damage in the epididymis is not well understood. This study was designed to investigate the role of miR-542-3p in the regulation of antioxidant capacity and oxidative damage in the epididymis of goats. Firstly, we determined the expression of miR-542-3p and glutathione peroxidase 5 (GPx5) in the epididymis of young and adult goats using RT-qPCR assay, and found that miR-542-3p and GPx5 exhibited inverse expression levels. Our results showed that the expression level of miR-542-3p in epididymis was upregulated (P < 0.05) in young goats compared to adult goats, whereas the expression level of GPx5 in epididymis was downregulated (P < 0.01) in young goats compared to adult goats. Next, we further investigated the roles and potential mechanisms of miR-542-3p in epididymis using goat caput epididymal epithelial cells (GCEECs) isolated from Tai-hang goats (9-month-old). Our results showed that the overexpression of miR-542-3p in GCEECs transfected with miR-542-3p mimics resulted in decreased (P < 0.05) antioxidant enzyme activities of superoxide dismutase (SOD) and catalase (CAT). Similarly, the overexpression of miR-542-3p in GCEECs resulted in decreased (P < 0.05) glutathione (GSH) content and total antioxidant capacity (TAOC). In addition, the overexpression of miR-542-3p in GCEECs resulted in increased (P < 0.05) malonaldehyde (MDA) content. The inverse results of SOD, CAT, GSH, TAOC and MDA were observed in the down-expression of miR-542-3p in GCEECs transfected with miR-542-3p inhibitors (P < 0.05). Furthermore, GPx5 was confirmed to be a validated target of miR-542-3p in GCEECs using a dual-luciferase reporter assay, and transfection of miR-542-3p mimics decreased (P < 0.05) the mRNA expression and protein level of GPx5. In conclusion, our results indicated that miR-542-3p reduced antioxidant capacity and increased oxidative damage in GCEECs by targeting GPx5. The present study further understands the regulation of antioxidant capacity and epididymal-specific GPx5 secretion in caput epididymidis.


Subject(s)
Epididymis , MicroRNAs , Animals , Antioxidants/metabolism , Epididymis/metabolism , Epithelial Cells/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Goats/genetics , Goats/metabolism , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Superoxide Dismutase/metabolism
11.
ACS Appl Mater Interfaces ; 14(1): 1187-1194, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34958190

ABSTRACT

Power conversion efficiencies (PCEs) and device stability are two key technical factors restricting the commercialization of organic solar cells (OSCs). In the past decades, though the PCEs of OSCs have been significantly enhanced, device instability, especially in the state-of-the-art nonfullerene system, still needs to be solved. In this work, an effective crosslinker (namely, DTODF-4F), with conjugated fluorene-based backbone and crosslinkable epoxy side-chains, has been designed and synthesized, which is introduced to enhance the morphological stabilization of the PM6:Y6-based film. This crosslinker with two epoxy groups can be in situ crosslinked into a stable network structure under ultraviolet radiation. We demonstrate that DTODF-4F, which acted as a third component, can promote the exciton dissociation rate and reduce traps/defects, finally resulting in the enhancement of efficiency. In particular, the OSC devices exhibit better stability under continuous heating owing to the morphology fixation of the bulk heterojunction. This work drives the development direction of morphological stabilization to further improve the performance and stability of OSCs.

12.
J Transl Med ; 19(1): 313, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34281583

ABSTRACT

BACKGROUND: The exploration of genomic alterations in Chinese colorectal liver metastasis (CRLM) is limited, and corresponding genetic biomarkers for patient's perioperative management are still lacking. This study aims to understand genome diversification and complexity that developed in CRLM. METHODS: A custom-designed IDT capture panel including 620 genes was performed in the Chinese CRLM cohort, which included 396 tumor samples from metastatic liver lesions together with 133 available paired primary tumors. RESULTS: In this Chinese CRLM cohort, the top-ranked recurrent mutated genes were TP53 (324/396, 82%), APC (302/396, 76%), KRAS (166/396, 42%), SMAD4 (54/396, 14%), FLG (52/396, 13%) and FBXW7 (43/396, 11%). A comparison of CRLM samples derived from left- and right-sided primary lesions confirmed that the difference in survival for patients with different primary tumor sites could be driven by variations in the transforming growth factor ß (TGF-ß), phosphatidylinositol 3-kinase (PI3K) and RAS signaling pathways. Certain genes had a higher variant rate in samples with metachronous CRLM than in samples with simultaneous metastasis. Overall, the metastasis and primary tumor samples displayed highly consistent genomic alterations, but there were some differences between individually paired metastases and primary tumors, which were mainly caused by copy number variations. CONCLUSION: We provide a comprehensive depiction of the genomic alterations in Chinese patients with CRLM, providing a fundamental basis for further personalized therapy applications.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , China , Colorectal Neoplasms/genetics , DNA Copy Number Variations/genetics , Filaggrin Proteins , Genomics , Humans , Liver Neoplasms/genetics , Mutation/genetics , Phosphatidylinositol 3-Kinases
13.
Front Oncol ; 11: 641869, 2021.
Article in English | MEDLINE | ID: mdl-34150614

ABSTRACT

Penile squamous cell carcinoma (PSCC) is a rare malignancy with poor survival after standard treatment. Although genomic alterations of PSCC have been characterized in several latest studies, the association between the formation of somatic landscape and regional lymph node metastasis (LNM), an important predictor for patient survival, has not been comprehensively investigated. Here, we collected formalin-fixed paraffin-embedded tumor tissue and matched normal samples of 32 PSCC patients, including 14 LNM patients and 18 clinically node-negative patients, to implement a whole-exome sequencing. Comparison of genomic features among different lymph node status subgroups was conducted after genomic profiling and its effects on patient survival were explored. Top-ranked recurrent gene mutants in our PSCC cohort were TP53 (13/32), NOTCH1 (12/32), CDKN2A (11/32), TTN (9/32) and FAT1 (8/32), mainly identified in the Notch, Hippo, cell cycle, TP53, RTK-RAS and PI3K pathways. While CDKN2A was confirmed to be the driver gene in all PSCC patients, certain gene mutants were significantly enriched in LNM involved patients, including TP53 (9/14 vs. 4/18, p = 0.029) and GBF1 (4/14 vs. 0/18, p = 0.028). Overall survival stratification of PSCC patients were found to be significantly correlated with mutations of three genes, including PIK3CA (Hazard ratio [HR] = 4.15, p = 0.029), CHD7 (HR = 4.82, p = 0.032) and LAMC3 (HR = 15.9, p < 0.001). PIK3CA and LAMC3 held a higher prevalence in patients with LNM compared to those without LNM (PIK3CA: 3/14 vs. 1/18, LAMC3: 2/14 vs. 1/18). Our finding demonstrated that genomic divergence exists across PSCC patients with different lymph node statuses, and it may be correlated with their survival outcome. It helps delineate somatic evolution during tumor progression and perfect potential therapeutic intervention in this disease.

14.
Front Oncol ; 11: 643375, 2021.
Article in English | MEDLINE | ID: mdl-33869034

ABSTRACT

Deficiency of the DNA damage repair (DDR) signaling pathways is potentially responsible for genetic instability and oncogenesis in tumors, including colorectal cancer. However, the correlations of mutated DDR signaling pathways to the prognosis of colorectal cancer liver metastasis (CRLM) after resection and other clinical applications have not been fully investigated. Here, to test the potential correlation of mutated DDR pathways with survival and pre-operative chemotherapy responses, tumor tissues from 146 patients with CRLM were collected for next-generation sequencing with a 620-gene panel, including 68 genes in 7 DDR pathways, and clinical data were collected accordingly. The analyses revealed that 137 of 146 (93.8%) patients had at least one mutation in the DDR pathways. Mutations in BER, FA, HRR and MMR pathways were significantly correlated with worse overall survival than the wild-types (P < 0.05), and co-mutated DDR pathways showed even more significant correlations (P < 0.01). The number of mutated DDR pathways was also proved an independent stratifying factor of overall survival by Cox multivariable analysis with other clinical factors and biomarkers (hazard ratio = 9.14; 95% confidence interval, 1.21-68.9; P = 0.032). Additionally, mutated FA and MMR pathways were positively and negatively correlated with the response of oxaliplatin-based pre-operative chemotherapy (P = 0.0095 and 0.048, respectively). Mutated DDR signaling pathways can predict pre-operative chemotherapy response and post-operative survival in CRLM patients.

15.
Front Oncol ; 10: 571545, 2020.
Article in English | MEDLINE | ID: mdl-33194669

ABSTRACT

The tumor mutational burden (TMB) has been reported as a predictive marker of the response to immune checkpoint inhibition (ICI) therapy in previous melanoma clinical trials. However, the TMB alone is not sufficient to accurately predict immunotherapy benefit. Additional biomarkers are needed for better stratification of immunotherapy-sensitive patients. In the present study, mutation data and survival information of patients with melanoma were collected from several immunotherapy studies, and tumor heterogeneity was estimated using mutant-allele tumor heterogeneity (MATH). The benefit score was defined as the ratio between the TMB and tumor heterogeneity, and optimal critical values were selected to group patients and evaluate their response to ICI treatment. The benefit score significantly improved the performance of stratifying the overall survival of patients compared with the TMB alone as a predictor in two independent cohorts (p = 0.0068 vs. p = 0.1 and p = 0.045 vs. p = 0.13), in which patients were treated with Ipilimumab and Nivolumab, respectively. In another cohort of patients with melanoma receiving mixed ICI treatment, the benefit score was also positively associated with higher overall survival (p = 0.022) and outperformed the TMB alone, with a significance of p = 0.089. The benefit score showed a positive correlation with clonal TMB, a reported immunotherapy marker, and exceeded it in immunotherapy response prediction. Besides, a high benefit score was found to be associated with higher proportions of natural killer cells, lower proportions of M2 macrophages and elevated CD8 T cells, all of which favor ICI therapy. In summary, tumor heterogeneity combined with the TMB showed superior efficacy in predicting the response to ICI therapy. This might further help to delineate the mechanisms of immunotherapy in patients with melanoma.

16.
J Pineal Res ; 67(1): e12569, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30861591

ABSTRACT

Development of secondary hair follicles in early postnatal cashmere goats may be adversely affected by reactive oxygen species which cause oxidative stress. Because melatonin is a potent antioxidant and scavenger of free radicals, this study explored the effects of melatonin on secondary hair follicle development and subsequent cashmere production. It was found that the initiation of new secondary follicles in early postnatal Inner Mongolian cashmere goats of both melatonin-treated and control goats occurred in the first 10 weeks of age. Melatonin promoted the initiation and maturation of secondary follicles and increased their population. Importantly, the beneficial effect of melatonin on secondary follicle population remained throughout life. As a result, melatonin increased cashmere production and improved its quality in terms of reduced fiber diameter. The mechanisms underlying the role of melatonin on secondary follicle development included the enhancement of activities of antioxidant enzymes, for example, superoxide dismutase and glutathione peroxidase (GSH-Px), elevated total antioxidant capacity, and upregulated anti-apoptotic Bcl-2 expression and downregulated expression of the pro-apoptotic proteins, Bax and caspase-3. These results reveal that melatonin serves to promote secondary hair follicle development in early postnatal cashmere goats and expands our understanding of melatonin application in cashmere production. Melatonin treatment led to an increase in both the quantity and quality of cashmere fiber. This increased the textile value of the fibers and provided economic benefit.


Subject(s)
Apoptosis , Gene Expression Regulation , Hair Follicle/metabolism , Melatonin/metabolism , Animals , Goats , Melatonin/genetics
17.
Adv Mater ; 30(27): e1706361, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29782668

ABSTRACT

Two medium-bandgap p-type organic small molecules H21 and H22 with an alkylsily-thienyl conjugated side chain on benzo[1,2-b:4,5-b']dithiophene central units are synthesized and used as donors in all-small-molecule organic solar cells (SM-OSCs) with a narrow-bandgap n-type small molecule 2,2'-((2Z,2'Z)-((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IDIC) as the acceptor. In comparison to H21 with 3-ethyl rhodanine as the terminal group, H22 with cyanoacetic acid esters as the terminal group shows blueshifted absorption, higher charge-carrier mobility and better 3D charge pathway in blend films. The power conversion efficiency (PCE) of the SM-OSCs based on H22:IDIC reaches 10.29% with a higher open-circuit voltage of 0.942 V and a higher fill factor of 71.15%. The PCE of 10.29% is among the top efficiencies of nonfullerene SM-OSCs reported in the literature to date.

18.
J Dairy Res ; 85(2): 201-203, 2018 May.
Article in English | MEDLINE | ID: mdl-29785909

ABSTRACT

The objectives of the research reported in this Research Communication were to compare the variation of hind quarter skin surface temperature pre- and post- milking in dairy cows and to determine the optimal time to capture images by infrared thermography for improving the sensitivity and specificity of mastitis detection in dairy cows. Hind quarter infrared images of 102 Holstein dairy cows were captured from the caudal view by an infrared camera pre-milking and post-milking. The udder skin surface temperature was measured with the help of the image processing software. No significant difference was found between the left and right quarter skin surface temperature pre- and post- milking. The hind quarter skin surface temperature pre-milking was not significantly influenced by milk yield, but exhibited a rising trend along with the increase of milk yield. The hind quarter skin surface temperature post-milking was significantly influenced by milk yield. This leads us to conclude that the sensitivity and specificity of IRT in mastitis detection may be influenced by milk yield and it may be better to capture the infrared images of cow udders pre-milking.


Subject(s)
Lactation/physiology , Mammary Glands, Animal/physiology , Mastitis, Bovine/diagnosis , Skin Temperature , Thermography/veterinary , Animals , Cattle , Dairying/methods , Female , Sensitivity and Specificity
19.
Protein Pept Lett ; 25(4): 350-355, 2018.
Article in English | MEDLINE | ID: mdl-29557737

ABSTRACT

BACKGROUND: SjOgren's Syndrome (SS) is a systemic and chronic autoimmune disorder that affects the exocrine glands with massive autoantibody production. Although the pathogenesis of the disorder is incompletely understood, but some studies have reported that anti-moesin antibodies have been detected in autoimmune diseases with which SS is closely associated. Here, we have investigated moesin's potential involvement in SS. OBJECTIVE: This study aims to verify whether moesin is a specific autoantigen involved in Chinese Hans SS patients. METHODS: First, recombinant human moesin was expressed and purified. Next, the protein was verified as antigen by Western blotting and immunoprecipitation. The positive protein band in the immunoprecipitation was identified by (MALDI-TOF/TOF). Finally, an optimized ELISA (Enzyme- Linked Immunosorbent Assay) kit was developed to measure the titer concentration of anti-moesin antibody-positive patients in a large cohort of clinical subjects. RESULTS: Univariate analysis revealed that the proportion of individuals positive for serum IgG against recombinant human moesin was 42 % in a group of Chinese Hans SS patients (21 of 50), 22 % in systemic lupus erythematosus patients and (11 of 50), compared to only 4 % in healthy controls (2 of 50). CONCLUSION: An association between anti-moesin antibodies and SS manifestation have been found which may be considered a suspected serum biomarker for the development of SS.


Subject(s)
Autoantibodies/metabolism , Autoantigens/blood , Microfilament Proteins/blood , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/drug therapy , Adult , Biomarkers/blood , Case-Control Studies , Cohort Studies , Female , Humans , Immunoglobulin G/blood , Male , Microfilament Proteins/immunology , Middle Aged , Recombinant Proteins/immunology , Sjogren's Syndrome/immunology
20.
Angew Chem Int Ed Engl ; 57(17): 4580-4584, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29468852

ABSTRACT

All-polymer solar cells (all-PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)-based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state-of-the-art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI-based polymer acceptor. Herein, a rhodanine-based dye molecule was introduced into the NDI-based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up-shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive-free all-PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all-PSCs to date. These results indicate that incorporating a dye into the n-type polymer gives insight into the precise design of high-performance polymer acceptors for all-PSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...