Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 142: 107940, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34492448

ABSTRACT

High nitrogen nickel-free austenitic stainless steels (HNSs) have great potentials to be used in dentistry owing to its exceptional mechanical properties, high corrosion resistance, and biocompatibility. In this study, HNSs with nitrogen of 0.88 wt% and 1.08 wt% displayed much lower maximum pit depths than 316L stainless steel (SS) after 21 d of immersion in abiotic artificial saliva (2.2 µm and 1.7 µm vs. 4.5 µm). Microbiologically influenced corrosion (MIC) evaluations revealed that Streptococcus mutans biofilms led to much severer corrosion of 316L SS than HNSs. Corrosion current densities of HNSs were two orders of magnitude lower than that of 316L SS after incubation of 7 d (37.5 nA/cm2 and 29.9 nA/cm2 vs. 5.63 µA/cm2). The pitting potentials of HNSs were at least 550 mV higher than that of 316L SS in the presence of S. mutans, confirming the better MIC resistance of HNSs. Cytotoxicity assay confirmed that HNSs were not toxic to MC3T3-E1 cells and allowed better sessile cell growth on them than on 316L SS. It can be concluded that HNSs are more suitable dental materials than the conventional 316L SS.


Subject(s)
Materials Testing/methods , Nitrogen/metabolism , Saliva, Artificial/chemistry , Stainless Steel/chemistry , Streptococcus mutans/metabolism , Corrosion
2.
ISME J ; 15(10): 3084-3093, 2021 10.
Article in English | MEDLINE | ID: mdl-33972726

ABSTRACT

Microbial corrosion of iron-based materials is a substantial economic problem. A mechanistic understanding is required to develop mitigation strategies, but previous mechanistic studies have been limited to investigations with relatively pure Fe(0), which is not a common structural material. We report here that the mechanism for microbial corrosion of stainless steel, the metal of choice for many actual applications, can be significantly different from that for Fe(0). Although H2 is often an intermediary electron carrier between the metal and microbes during Fe(0) corrosion, we found that H2 is not abiotically produced from stainless steel, making this corrosion mechanism unlikely. Geobacter sulfurreducens and Geobacter metallireducens, electrotrophs that are known to directly accept electrons from other microbes or electrodes, extracted electrons from stainless steel via direct iron-to-microbe electron transfer. Genetic modification to prevent H2 consumption did not negatively impact on stainless steel corrosion. Corrosion was inhibited when genes for outer-surface cytochromes that are key electrical contacts were deleted. These results indicate that a common model of microbial Fe(0) corrosion by hydrogenase-positive microbes, in which H2 serves as an intermediary electron carrier between the metal surface and the microbe, may not apply to the microbial corrosion of stainless steel. However, direct iron-to-microbe electron transfer is a feasible route for stainless steel corrosion.


Subject(s)
Geobacter , Corrosion , Electrons , Geobacter/genetics , Iron , Stainless Steel
SELECTION OF CITATIONS
SEARCH DETAIL
...