Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(44): 16815-16826, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37856846

ABSTRACT

Sugarcane, a major sugar and energy crop worldwide faces an increasing demand for higher yields. Identifying yield-related markers and candidate genes is valuable for breeding high-yield varieties using molecular techniques. In this work, seven yield-related traits were evaluated in a diversity panel of 159 genotypes, derived from Tripidium arundinaceum, Saccharum spontaneum, and modern sugarcane genotypes. All traits exhibited significant genetic variance with high heritability and high correlations. Genetic diversity analysis reveals a genomic decay of 23 kb and an average single nucleotide polymorphism (SNP) number of 25,429 per genotype. These 159 genotypes were divided into 4 subgroups. Genome-wide association analysis identified 47 SNPs associated with brix, spanning 36 quantitative trait loci (QTLs), and 138 SNPs for other traits across 104 QTLs, covering all 32 chromosomes. Interestingly, 12 stable QTLs associated with yield-related traits were identified, which contained 35 candidate genes. This work provides markers and candidate genes for marker-assisted breeding to improve sugarcane yields.


Subject(s)
Quantitative Trait Loci , Saccharum , Genome-Wide Association Study , Saccharum/genetics , Plant Breeding , Phenotype , Polymorphism, Single Nucleotide , Edible Grain
2.
Int J Mol Sci ; 23(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36430736

ABSTRACT

Sugarcane, a cash crop, is easily affected by low temperature, which results in a decrease in yield and sugar production. Breeding a new variety with cold tolerance is an essential strategy to reduce loss from cold stress. The identification of germplasms and genes/proteins with cold tolerance is a vital step in breeding sugarcane varieties with cold tolerance via a conventional program and molecular technology. In this study, the physiological and biochemical indices of 22 genotypes of S. spontaneum were measured, and the membership function analysis method was used to comprehensively evaluate the cold tolerance ability of these genotypes. The physiological and biochemical indices of these S. spontaneum genotypes showed a sophisticated response to low temperature. On the basis of the physiological and chemical indices, the genotypes were classified into different cold tolerance groups. Then, the high-tolerance genotype 1027 and the low-tolerance genotype 3217 were selected for DIA-based proteomic analysis by subjecting them to low temperature. From the four comparison groups, 1123, 1341, 751, and 1693 differentially abundant proteins (DAPs) were identified, respectively. The DAPs based on genotypes or treatments participated in distinct metabolic pathways. Through detailed analysis of the DAPs, some proteins related to protein homeostasis, carbohydrate and energy metabolism, amino acid transport and metabolism, signal transduction, and the cytoskeleton may be involved in sugarcane tolerance to cold stress. Furthermore, five important proteins related to cold tolerance were discovered for the first time in this study. This work not only provides the germplasms and candidate target proteins for breeding sugarcane varieties with cold tolerance via a conventional program and molecular breeding, but also helps to accelerate the determination of the molecular mechanism underlying cold tolerance in sugarcane.


Subject(s)
Saccharum , Plant Breeding , Proteomics , Saccharum/metabolism , Temperature
3.
Genes (Basel) ; 13(2)2022 01 27.
Article in English | MEDLINE | ID: mdl-35205291

ABSTRACT

Sugarcan e is a major crop for sugar and biofuel production and is cultivated in tropical and subtropical areas worldwide. Sugarcane growth is constrained because of winter's low-temperature stress, and cold resistance is an important limitation in sugarcane growth enhancement. Therefore, in this study, we identified a gene involved in the low-temperature stress response of sugarcane. Calcineurin B-like (CBL) protein is a calcium signal receptor involved in the cold stress response. Five sugarcane CBL genes were cloned, sequenced, and named SoCBL1, SoCBL3, SoCBL5, SoCBL6, and SoCBL9. The protein sequences of these genes were analyzed. The calculated molecular weight of these proteins was 24.5, 25.9, 25.2, 25.6, and 26.3 kD, respectively. Subcellular localization analysis revealed that SoCBL1, SoCBL3, SoCBL6, and SoCBL9 were situated in the cytoplasm, while SoCBL5 was present in mitochondria. Secondary structure analysis showed that these five CBL proteins had similar secondary structures. Conserved domain analysis displayed that each sugarcane CBL protein contained three conserved EF domains. According to the self-expanding values of the phylogenetic tree, the CBL gene family was divided into four groups. The CBL1 and CBL9 genes were classified into one group, illustrating that these two genes might possess a similar function. The expression analysis of the SoCBL gene under low temperatures showed that SoCBL3 and SoCBL5 were affected significantly, while SoCBL1 and SoCBL9 were less affected. These results demonstrate that the CBL genes in sugarcane have similar characteristics and present differences in genetic diversity and gene expression response to low temperatures. Therefore, these genes might be novel candidates for fighting cold stress in sugarcane.


Subject(s)
Saccharum , Calcineurin/genetics , Cold-Shock Response/genetics , Gene Expression , Phylogeny , Saccharum/genetics
4.
J Oncol ; 2022: 6775496, 2022.
Article in English | MEDLINE | ID: mdl-35096063

ABSTRACT

PURPOSE: Hypoxia is a leading hallmark of tumors, which is associated with carcinogenicity and dismal patient outcome. In this project, we tended to detect the prognostic value of hypoxic lncRNA and further generate a hypoxic lncRNA-based model in head and neck squamous cell carcinoma (HNSCC). METHODS: We integrated the transcriptome and clinical information of HNSCC based on TCGA dataset. Univariate-multivariate Cox analysis was implemented to develop the signature according to hypoxia-related lncRNAs (HRlncRNAs) with greatly prognostic power in HNSCC. Next, the biomarker signature was tested using survival analysis and ROC plots. Moreover, we used GSEA to uncover the potential pathways of HRlncRNAs, and CIBERSORT and ssGSEA tools were applied to mirror the immune status of HNSCC patients. RESULTS: Nine HRlncRNAs (LINC00460, AC144831.1, AC116914.2, MIAT, MSC-AS1, LINC01980, MYOSLID, AL357033.4, and LINC02195) were determined to develop a HRlncRNA-related signature (HRLS). High-HRLS group was associated with dismal patient outcome using survival analysis. Moreover, the HRLS was superior to classical clinical traits in forecasting survival rate of samples with HNSCC. GSEA unearthed the top six hallmarks in the HRLS-high group individuals. In addition, the HRLS was also bound up with the infiltration of macrophages, CD8 T cells, and activated mast cells. CONCLUSION: Our nominated nine-HRlncRNA risk model is robust and valuable tool for forecasting patient outcome in HNSCC.

5.
Front Plant Sci ; 12: 796189, 2021.
Article in English | MEDLINE | ID: mdl-35069651

ABSTRACT

Sugarcane is one of the most important industrial crops globally. It is the second largest source of bioethanol, and a major crop for biomass-derived electricity and sugar worldwide. Smut, caused by Sporisorium scitamineum, is a major sugarcane disease in many countries, and is managed by smut-resistant varieties. In China, smut remains the single largest constraint for sugarcane production, and consequently it impacts the value of sugarcane as an energy feedstock. Quantitative trait loci (QTLs) associated with smut resistance and linked diagnostic markers are valuable tools for smut resistance breeding. Here, we developed an F1 population (192 progeny) by crossing two sugarcane varieties with contrasting smut resistance and used for genome-wide single nucleotide polymorphism (SNP) discovery and mapping, using a high-throughput genotyping method called "specific locus amplified fragment sequencing (SLAF-seq) and bulked-segregant RNA sequencing (BSR-seq). SLAF-seq generated 148,500 polymorphic SNP markers. Using SNP and previously identified SSR markers, an integrated genetic map with an average 1.96 cM marker interval was produced. With this genetic map and smut resistance scores of the F1 individuals from four crop years, 21 major QTLs were mapped, with a phenotypic variance explanation (PVE) > 8.0%. Among them, 10 QTLs were stable (repeatable) with PVEs ranging from 8.0 to 81.7%. Further, four QTLs were detected based on BSR-seq analysis. aligning major QTLs with the genome of a sugarcane progenitor Saccharum spontaneum, six markers were found co-localized. Markers located in QTLs and functional annotation of BSR-seq-derived unigenes helped identify four disease resistance candidate genes located in major QTLs. 77 SNPs from major QTLs were then converted to Kompetitive Allele-Specific PCR (KASP) markers, of which five were highly significantly linked to smut resistance. The co-localized QTLs, candidate resistance genes, and KASP markers identified in this study provide practically useful tools for marker-assisted sugarcane smut resistance breeding.

SELECTION OF CITATIONS
SEARCH DETAIL
...