Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(15): 19459-19469, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37017416

ABSTRACT

The stability of the catalyst slurry of a proton-exchange membrane fuel cell (PEMFC) is of great significance to its large-scale production and commercialization. In this study, three kinds of slurries with different stabilities were prepared using different probe ultrasonic powers. The influence of electrostatic force and network structure on slurry stability was also studied. In addition, the catalyst layer (CL) and membrane electrode assembly (MEA) were further tested to determine the relationship between slurry stability, CL, and MEA performance. The results showed that the slurry prepared with 600 W dispersion power had the least agglomeration on day 12, which is due to the clusters in the slurry having the smallest average particle size and the largest surface area, thereby allowing them to absorb the most Nafion and have the largest electrostatic force to inhibit agglomeration. However, the slurry with 1200 W dispersion power had the least sedimentation after 9.4 days because the strength of the network structure in the slurry strengthened the most, resulting in a significant increase in viscosity and inhibition of sedimentation. Electrochemical tests showed that the MEA gradually exhibited worse electrical performance and higher impedance due to the agglomeration of catalyst particles caused by the standing process. Altogether, this study provides insights to better understand and regulate the stability of catalyst slurries.

2.
ACS Omega ; 6(48): 32960-32969, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34901647

ABSTRACT

The cluster structure in the catalyst ink of a proton exchange membrane fuel cell determines its performance. The interaction among solvent, ionomer, and catalyst in ink determines the cluster structure and affects the microstructure and surface morphology of the catalyst layer, which is of great significance to improve the conductivity of the catalyst layer to protons, electrons, and water. First, the dissolved state of the main chain and the side chain of the ionomer in solvent was characterized. The results of relative viscosity, ζ-potential, effective proton fraction, and nuclear magnetic resonance (NMR) showed that the alcohol aqueous solution promoted the stretching electrolysis of the main chain and the side chain of the ionomer more than the pure aqueous solvent, making the ionomer clusters smaller. The rheological test of the ink shows that the pure water solvent ink has the largest cluster and the strongest network structure. Under the test conditions, the clusters in the ink can be reconstructed quickly after breakage through viscous shearing. The addition of alcohols will make the clusters in the ink smaller and the network structure brittle. After the clusters and the network structure are damaged, they will slowly recombine and the viscosity in the ink will gradually recover. Ethanol will minimize the clusters in the ink, and the network structure in the ink is the weakest. The effect of the network strength on the cluster structure is weakened by reducing the solid content in the ink. The amplitude scanning test shows that the network structure in the slurry is almost eliminated after reducing the solid content, the storage modulus of ink with water, 50 wt % isopropyl alcohol (IPA), 50 wt % n-propanol (NPA), and 50 wt % ethanol (ET) decreases in turn, as well as the liquid viscosity behavior increases and the cluster particle size in the ink decreases. In conclusion, more dispersed ionomers and alcohol molecules with smaller molecular structures are more conducive to the dispersion of clusters in the ink.

3.
ACS Appl Mater Interfaces ; 13(23): 27119-27128, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34086430

ABSTRACT

This study investigated the effects of the dielectric constant (ε) of a dispersion solvent and ionomer content on the rheology of graphitized carbon (GC)-supported Pt catalyst ink and the structure of catalyst layers (CLs). The ionomer dispersions and catalyst inks were tested using rheological techniques, zeta (ξ) potential, and dynamic light scattering measurements. Results showed that increases in the solvent ε or ionomer content increased the ξ-potential of catalyst particles in the ink, which reduced the catalyst agglomerate size. Steady-state and oscillation scans showed that the Pt/GC catalyst ink had shear-thinning properties and gel-like behavior. The ink with a solvent ε of 40 tended to be more Newtonian fluid, with low yield stress (σy). The ionomer content altered the rheology of the ink by changing the internal interaction of inks. Solvents with ε of 70 and 55 enhanced the adsorption of ionomers onto catalysts, thereby increasing the adhesion between ink particles and reducing the risk of CL cracking. As the ionomer content increased, the catalyst absorbed more ionomers in inks, increasing the fracture toughness of CLs, which reduced the crack width.

SELECTION OF CITATIONS
SEARCH DETAIL
...