Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
World J Microbiol Biotechnol ; 40(6): 191, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702442

ABSTRACT

Seed endophytes played a crucial role on host plants stress tolerance and heavy metal (HM) accumulation. Dysphania ambrosioides is a hyperaccumulator and showed strong tolerance and extraordinary accumulation capacities of multiple HMs. However, little is known about its seed endophytes response to field HM-contamination, and its role on host plants HM tolerance and accumulation. In this study, the seed endophytic community of D. ambrosioides from HM-contaminated area (H) and non-contaminated area (N) were investigated by both culture-dependent and independent methods. Moreover, Cd tolerance and the plant growth promoting (PGP) traits of dominant endophytes from site H and N were evaluated. The results showed that in both studies, HM-contamination reduced the diversity and richness of endophytic community and changed the most dominant endophyte, but increased resistant species abundance. By functional trait assessments, a great number of dominant endophytes displayed multiple PGP traits and Cd tolerance. Interestingly, soil HM-contamination significantly increased the percentage of Cd tolerance isolates of Agrobacterium and Epicoccum, but significantly decreased the ration of Agrobacterium with the siderophore production ability. However, the other PGP traits of isolates from site H and N showed no significant difference. Therefore, it was suggested that D. ambrosioides might improve its HM tolerance and accumulation through harboring more HM-resistant endophytes rather than PGP endophytes, but to prove this, more work need to be conducted in the future.


Subject(s)
Cadmium , Endophytes , Metals, Heavy , Seeds , Soil Microbiology , Soil Pollutants , Endophytes/metabolism , Endophytes/isolation & purification , Metals, Heavy/metabolism , Seeds/microbiology , Soil Pollutants/metabolism , Cadmium/metabolism , Biodiversity , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics , Soil/chemistry , Biodegradation, Environmental , Plant Roots/microbiology
2.
Chemistry ; : e202401038, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775655

ABSTRACT

Cobalt phosphosulphide (CoPS) has recently been recognized as a potentially effective electrocatalyst for the hydrogen evolution reaction (HER). However, there have been no research on the design of CoPS-based heterojunctions to boost their HER performance. Herein, CoPS/Co4S3 heterojunction was prepared by phosphating treatment based on defect-rich flower-like Co1-xS precursors. The high specific surface area of nanopetals, together with the heterojunction structure with inhomogeneous strain, exposes more active sites in the catalyst. The electronic structure of the catalyst is reconfigured as a result of the interfacial interactions, which promote the catalyst's ability to adsorb hydrogen and conduct electricity. The synergistic effect of the Co and S dual-site further enhance the catalytic activity. The catalyst has overpotentials of 61 and 70 mV to attain a current density of 10 mA cm-2 in acidic and alkaline media, respectively, which renders it competitive with previously reported analogous catalysts. This work proposes an effective technique for constructing transition metal phosphosulfide heterojunctions, as well as the development of an efficient HER electrocatalyst.

3.
Mitochondrion ; 78: 101902, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38768694

ABSTRACT

Traumatic brain injury (TBI) is a global public-health problem. Astrocytes, and their mitochondria, are important factors in the pathogenesis of TBI-induced secondary injury. Mitochondria extracted from healthy tissues and then transplanted have shown promise in models of a variety of diseases. However, the effect on recipient astrocytes is unclear. Here, we isolated primary astrocytes from newborn C57BL/6 mice, one portion of which was used to isolate mitochondria, and another was subjected to stretch injury (SI) followed by transplantation of the isolated mitochondria. After incubation for 12 h, cell viability, mitochondrial dysfunction, calcium overload, redox stress, inflammatory response, and apoptosis were improved. Live-cell imaging showed that the transplanted mitochondria were incorporated into injured astrocytes and fused with their mitochondrial networks, which was in accordance with the changes in the expression levels of markers of mitochondrial dynamics. The astrocytic IKK/NF-κB pathway was decelerated whereas the AMPK/PGC-1α pathway was accelerated by transplantation. Together, these results indicate that exogenous mitochondria from untreated astrocytes can be incorporated into injured astrocytes and fuse with their mitochondrial networks, improving cell viability by ameliorating mitochondrial dysfunction, redox stress, calcium overload, and inflammation.

4.
Sci Rep ; 14(1): 8453, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605134

ABSTRACT

The complex networks exhibit significant heterogeneity in node connections, resulting in a few nodes playing critical roles in various scenarios, including decision-making, disease control, and population immunity. Therefore, accurately identifying these influential nodes that play crucial roles in networks is very important. Many methods have been proposed in different fields to solve this issue. This paper focuses on the different types of disassortativity existing in networks and innovatively introduces the concept of disassortativity of the node, namely, the inconsistency between the degree of a node and the degrees of its neighboring nodes, and proposes a measure of disassortativity of the node (DoN) by a step function. Furthermore, the paper analyzes and indicates that in many real-world network applications, such as online social networks, the influence of nodes within the network is often associated with disassortativity of the node and the community boundary structure of the network. Thus, the influential metric of node based on disassortativity and community structure (mDC) is proposed. Extensive experiments are conducted in synthetic and real networks, and the performance of the DoN and mDC is validated through network robustness experiments and immune experiment of disease infection. Experimental and analytical results demonstrate that compared to other state-of-the-art centrality measures, the proposed methods (DoN and mDC) exhibits superior identification performance and efficiency, particularly in non-disassortative networks and networks with clear community structures. Furthermore, we find that the DoN and mDC exhibit high stability to network noise and inaccuracies of the network data.

5.
Dev Cell ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38579718

ABSTRACT

Embryogenesis requires substantial coordination to translate genetic programs to the collective behavior of differentiating cells, but understanding how cellular decisions control tissue morphology remains conceptually and technically challenging. Here, we combine continuous Cas9-based molecular recording with a mouse embryonic stem cell-based model of the embryonic trunk to build single-cell phylogenies that describe the behavior of transient, multipotent neuro-mesodermal progenitors (NMPs) as they commit into neural and somitic cell types. We find that NMPs show subtle transcriptional signatures related to their recent differentiation and contribute to downstream lineages through a surprisingly broad distribution of individual fate outcomes. Although decision-making can be heavily influenced by environmental cues to induce morphological phenotypes, axial progenitors intrinsically mature over developmental time to favor the neural lineage. Using these data, we present an experimental and analytical framework for exploring the non-homeostatic dynamics of transient progenitor populations as they shape complex tissues during critical developmental windows.

6.
J Clin Invest ; 134(9)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483480

ABSTRACT

Macrophage immune checkpoint inhibitors, such as anti-CD47 antibodies, show promise in clinical trials for solid and hematologic malignancies. However, the best strategies to use these therapies remain unknown, and ongoing studies suggest they may be most effective when used in combination with other anticancer agents. Here, we developed an unbiased, high-throughput screening platform to identify drugs that render lung cancer cells more vulnerable to macrophage attack, and we found that therapeutic synergy exists between genotype-directed therapies and anti-CD47 antibodies. In validation studies, we found that the combination of genotype-directed therapies and CD47 blockade elicited robust phagocytosis and eliminated persister cells in vitro and maximized antitumor responses in vivo. Importantly, these findings broadly applied to lung cancers with various RTK/MAPK pathway alterations - including EGFR mutations, ALK fusions, or KRASG12C mutations. We observed downregulation of ß2-microglobulin and CD73 as molecular mechanisms contributing to enhanced sensitivity to macrophage attack. Our findings demonstrate that dual inhibition of the RTK/MAPK pathway and the CD47/SIRPa axis is a promising immunotherapeutic strategy. Our study provides strong rationale for testing this therapeutic combination in patients with lung cancers bearing driver mutations.


Subject(s)
CD47 Antigen , Lung Neoplasms , Macrophages , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Humans , CD47 Antigen/genetics , CD47 Antigen/metabolism , CD47 Antigen/immunology , CD47 Antigen/antagonists & inhibitors , Mice , Animals , Macrophages/metabolism , Macrophages/immunology , Macrophages/pathology , Cell Line, Tumor , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Molecular Targeted Therapy , ErbB Receptors/genetics , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/immunology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , MAP Kinase Signaling System/genetics , Phagocytosis , Female
7.
Zhen Ci Yan Jiu ; 49(2): 177-184, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38413039

ABSTRACT

OBJECTIVES: To observe the curative efficacy of auricular comprehensive therapy on menstrual migraine(MM) and its effect on serum prostaglandin F2α(PGF2α), prostaglandin E2(PGE2) contents and ratio, so as to explore its possible mechanism. METHODS: A total of 66 patients with MM of liver-fire syndrome were randomly divided into observation group (33 cases, 2 cases dropped off) and control group (33 cases, 2 cases dropped off), and 20 healthy women were included in the normal group. Patients in the control group were given flunarizine hydrochloride capsules orally, twice a day, for 3 consecutive weeks. Patients in the observation group were treated with auricular comprehensive therapy, starting 2-5 days before menstrual cramps, once a week, for a total of 3 weeks. The visual analogue scale (VAS) and migraine score were evaluated before and after treatment, and follow-up for 1 and 2 menstrual cycles. Serum PGF2α and PGE2 contents were measured before and after treatment, and the PGF2α/PGE2 ratio was calculated. The clinical effective rates in the two groups were calculated. RESULTS: After treatment and follow-up for 1 and 2 menstrual cycles, the VAS scores, headache degree, the frequency and duration of headache attacks, as well as accompanying symptoms of the observation and control groups were lower than those before treatment(P<0.05), and those of the observation group was lower than those of the control group(P<0.05). Before treatment, the PGF2α contents in the observation and control group were significantly higher(P<0.05), while the PGE2 contents lower(P<0.05) and PGF2α/PGE2 ratio higher(P<0.05) than those in the normal group. After treatment, the serum PGF2α contents in the observation and control group were significantly reduced compared with which before treatment(P<0.05), and were lower in the observation group than that in the control group (P<0.05). The serum PGE2 contents in the observation and control groups were significantly increased after treatment compared with which before treatment(P<0.05), with the contents in the observation group higher than that in the control group(P<0.05). The serum PGF2α/PGE2 ratio in the observation and control group was significantly reduced after treatment compared with which before treatment(P<0.05), with the control group higher than the normal group(P<0.05), and the observation group lower than the control group(P<0.05). The clinical effective rate of the observation group was 93.5% (29/31), and that of the control group was 77.4% (24/31). The effective rate of the observation group was significantly higher than that of the control group(P<0.05). CONCLUSIONS: The curative efficacy of auricular comprehensive therapy on MM with liver-fire syndrome is significantly better than that of oral flunarizine hydrochloride capsules, especially in relieving hea-daches, reducing the frequency and duration of headache attacks, as well as accompanying symptoms. Its mechanism may be related to regulating the abnormal PGF2α and PGE2 contents of patients and reducing the ratio of PGF2α/PGE2.


Subject(s)
Migraine Disorders , Prostaglandins , Humans , Female , Flunarizine , Dinoprostone , Migraine Disorders/drug therapy , Headache/therapy , Syndrome
8.
Nature ; 627(8003): 389-398, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253266

ABSTRACT

The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived haematopoietic stem cells (HSCs)1. Perturbations to this process underlie diverse diseases, but the clonal contributions to human haematopoiesis and how this changes with age remain incompletely understood. Although recent insights have emerged from barcoding studies in model systems2-5, simultaneous detection of cell states and phylogenies from natural barcodes in humans remains challenging. Here we introduce an improved, single-cell lineage-tracing system based on deep detection of naturally occurring mitochondrial DNA mutations with simultaneous readout of transcriptional states and chromatin accessibility. We use this system to define the clonal architecture of HSCs and map the physiological state and output of clones. We uncover functional heterogeneity in HSC clones, which is stable over months and manifests as both differences in total HSC output and biases towards the production of different mature cell types. We also find that the diversity of HSC clones decreases markedly with age, leading to an oligoclonal structure with multiple distinct clonal expansions. Our study thus provides a clonally resolved and cell-state-aware atlas of human haematopoiesis at single-cell resolution, showing an unappreciated functional diversity of human HSC clones and, more broadly, paving the way for refined studies of clonal dynamics across a range of tissues in human health and disease.


Subject(s)
Cell Lineage , Hematopoiesis , Hematopoietic Stem Cells , Humans , Chromatin/genetics , Chromatin/metabolism , Clone Cells/classification , Clone Cells/cytology , Clone Cells/metabolism , DNA, Mitochondrial/genetics , Hematopoietic Stem Cells/classification , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mutation , Single-Cell Analysis , Transcription, Genetic , Aging
9.
J Magn Reson Imaging ; 59(2): 639-647, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37276070

ABSTRACT

BACKGROUND: Assessing the glymphatic function using diffusion tensor image analysis along the perivascular space (DTI-ALPS) may be helpful for mild traumatic brain injury (mTBI) management. PURPOSE: To assess glymphatic function using DTI-ALPS and its associations with global white matter damage and cognitive impairment in mTBI. STUDY TYPE: Prospective. POPULATION: Thirty-four controls (44.1% female, mean age 49.2 years) and 58 mTBI subjects (43.1% female, mean age 48.7 years), including uncomplicated mTBI (N = 32) and complicated mTBI (N = 26). FIELD STRENGTH/SEQUENCE: 3-T, single-shot echo-planar imaging sequence. ASSESSMENT: Magnetic resonance imaging (MRI) was done within 1 month since injury. DTI-ALPS was performed to assess glymphatic function, and peak width of skeletonized mean diffusivity (PSMD) was used to assess global white matter damage. Cognitive tests included Auditory Verbal Learning Test and Digit Span Test (forward and backward). STATISTICAL TESTS: Neuroimaging findings comparisons were done between mTBI and control groups. Partial correlation and multivariable linear regression assessed the associations between DTI-ALPS, PSMD, and cognitive impairment. Mediation effects of PSMD on the relationship between DTI-ALPS and cognitive impairment were explored. P-value <0.05 was considered statistically significant, except for cognitive correlational analyses with a Bonferroni-corrected P-value set at 0.05/3 ≈ 0.017. RESULTS: mTBI showed lower DTI-ALPS and higher PSMD, especially in complicated mTBI. DTI-ALPS was significantly correlated with verbal memory (r = 0.566), attention abilities (r = 0.792), executive function (r = 0.618), and PSMD (r = -0.533). DTI-ALPS was associated with verbal memory (ß = 8.77, 95% confidence interval [CI] 5.00, 12.54), attention abilities (ß = 5.67, 95% CI 4.56, 6.97), executive function (ß = 2.34, 95% CI 1.49, 3.20), and PSMD (ß = -0.79, 95% CI -1.15, -0.43). PSMD mediated 46.29%, 20.46%, and 24.36% of the effects for the relationship between DTI-ALPS and verbal memory, attention abilities, and executive function. DATA CONCLUSION: Glymphatic function may be impaired in mTBI reflected by DTI-ALPS. Glymphatic dysfunction may cause cognitive impairment related to global white matter damage after mTBI. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Brain Concussion , Cognitive Dysfunction , Glymphatic System , White Matter , Female , Humans , Middle Aged , Male , Brain Concussion/complications , Brain Concussion/diagnostic imaging , Prospective Studies , White Matter/diagnostic imaging , Magnetic Resonance Imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology
10.
Nat Cell Biol ; 25(10): 1506-1519, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37783795

ABSTRACT

Brain metastases represent an important clinical problem for patients with small-cell lung cancer (SCLC). However, the mechanisms underlying SCLC growth in the brain remain poorly understood. Here, using intracranial injections in mice and assembloids between SCLC aggregates and human cortical organoids in culture, we found that SCLC cells recruit reactive astrocytes to the tumour microenvironment. This crosstalk between SCLC cells and astrocytes drives the induction of gene expression programmes that are similar to those found during early brain development in neurons and astrocytes. Mechanistically, the brain development factor Reelin, secreted by SCLC cells, recruits astrocytes to brain metastases. These astrocytes in turn promote SCLC growth by secreting neuronal pro-survival factors such as SERPINE1. Thus, SCLC brain metastases grow by co-opting mechanisms involved in reciprocal neuron-astrocyte interactions during brain development. Targeting such developmental programmes activated in this cancer ecosystem may help prevent and treat brain metastases.


Subject(s)
Brain Neoplasms , Lung Neoplasms , Humans , Animals , Mice , Astrocytes/pathology , Lung Neoplasms/metabolism , Ecosystem , Brain Neoplasms/metabolism , Brain/metabolism , Tumor Microenvironment
11.
Cell Rep ; 42(11): 113340, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37906593

ABSTRACT

Duchenne muscular dystrophy (DMD) is a severe genetic disease caused by the loss of the dystrophin protein. Exon skipping is a promising strategy to treat DMD by restoring truncated dystrophin. Here, we demonstrate that base editors (e.g., targeted AID-mediated mutagenesis [TAM]) are able to efficiently induce exon skipping by disrupting functional redundant exonic splicing enhancers (ESEs). By developing an unbiased and high-throughput screening to interrogate exonic sequences, we successfully identify novel ESEs in DMD exons 51 and 53. TAM-CBE (cytidine base editor) induces near-complete skipping of the respective exons by targeting these ESEs in patients' induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Combined with strategies to disrupt splice sites, we identify suitable single guide RNAs (sgRNAs) with TAM-CBE to efficiently skip most DMD hotspot exons without substantial double-stranded breaks. Our study thus expands the repertoire of potential targets for CBE-mediated exon skipping in treating DMD and other RNA mis-splicing diseases.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Humans , Dystrophin/genetics , Dystrophin/metabolism , RNA, Guide, CRISPR-Cas Systems , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , RNA Splicing/genetics , Exons/genetics
13.
Environ Res ; 237(Pt 2): 116954, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37619629

ABSTRACT

Understanding the assembly and turnover of microbial communities is crucial for gaining insights into the diversity and functioning of lake ecosystems, a fundamental and central issue in microbial ecology. The ecosystem of Taihu Lake has been significantly jeopardized due to urbanization and industrialization. In this study, we examined the diversity, assembly, and turnover of bacterial and fungal communities in Taihu Lake sediment. The results revealed strong bacterial stochasticity and fast fungal turnover in the sediment. Significant heterogeneity was observed among all sediment samples in terms of environmental factors, especially ORP, TOC, and TN, as well as microbial community composition and alpha diversity. For instance, the fungal richness index exhibited an approximate 3-fold variation. Among the environmental factors, TOC, TN, and pH had a more pronounced influence on the bacterial community composition compared to the fungal community composition. Interestingly, species replacement played a dominant role in microbial beta diversity, with fungi exhibiting a stronger pattern. In contrast, stochastic processes governed the community assembly of both bacteria and fungi, but were more pronounced for bacteria (R2 = 0.7 vs. 0.5). These findings deepen the understanding of microbial assembly and turnover in sediments under environmental stress and provide essential insights for maintaining the multifunctionality of lake ecosystems.

14.
Nanoscale ; 15(33): 13790-13808, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37578278

ABSTRACT

Si anode has drawn growing attention because of its features of large specific capacity, low electrochemical potential, and high natural abundance. However, it suffers from severe electrochemical irreversibility due to its large volume change during cycling. In spite of the achievement of improved electrochemical performance after compositing with carbon materials, most of the reported Si/C composite anodes lack a simple preparation process. To obtain a promising Si-based anode material, both simple preparation process and improved performance are necessary. Herein, inspired by the structure of shock proof foam, a novel structure of Si-based composite (Si@FeNO@P), consisting of Si nanoparticles embedded within a highly graphitized Fe3C/Fe3O4 hybrid nanoparticle-interspersed foam-like porous carbon matrix, has been constructed using a simple method, consisting of simple mixing, drying, and carbonization processes. Thus, the well-designed composite structure effectively mitigates issues resulting from volumetric change of the Si during cycle and hence improves its performance significantly. The research results confirm outstanding performance of the Si@FeNO@P anode in the aspects of cycle durability, specific capacity, and rate capability, with 1116.1 (250th cycle), 858.1 (500th cycle), and 503.1 (500th cycle) mA h g-1 at 100, 1000, and 5000 mA g-1, respectively. By comparing the performance and structure of Si@FeNO@P with other control samples, it was substantiated that the outstanding performances of the Si@FeNO@P anode depend on the synergistic effects of the well-designed unique carbon matrix, conductive Fe3C, and Fe3O4-in situ derived metallic Fe nanoparticles during cycling. The outstanding electrochemical performance and simple preparation route make the Si@FeNO@P anode promising for lithium-ion battery applications. This work also gives useful insights into the development of high-performance Si-based anodes with simple practical methods.

15.
Zootaxa ; 5319(3): 389-402, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37518224

ABSTRACT

We describe a new species of the genus Achalinus Peters, 1869 from Daming Mountain, Shanglin County, Nanning City, Guangxi Zhuang Autonomous Region, China, based on a single adult male specimen. It can be distinguished from all the other species in Achalinus by a combination of the following morphological characters: (1) a bright yellow collar around the neck, extending forward to the ventral of the head; (2) tail length comparatively long, TaL/Tol ratio 0.25; (3) DSR 23-23-23, moderately keeled; (4) VS 3+162; (5) SC 74, unpaired; (6) cloacal plate entire; (7) SPL 6, the fourth and fifth in contact with the eye; (8) IFL 6, the first three touching the first pair of chin shields; (9) a single loreal; (10) length of suture between internasal significantly longer than that between prefrontal, LSBI/LSBP ratio 1.34; (11) two pairs of chin shields; (12) longitudinal vertebral line absent. In addition, the uncorrected p-distances between the new species and other known congeners ranged from 6.3% to 25.4% for the cytochrome c oxidase subunit 1 (CO1). With the addition of the new species the total number of described Achalinus species is increased to 23 of which 17 are found in China.


Subject(s)
Lizards , Snakes , Male , Animals , China , Animal Distribution , Phylogeny
16.
Zootaxa ; 5319(1): 76-90, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37518249

ABSTRACT

A new species of the genus Hebius Thompson, 1913 is described from Youjiang District, Baise City, Guangxi Zhuang Autonomous Region, China, based on a single adult female specimen. It can be distinguished from its congeners by the following combination of characters: (1) dorsal scale rows 19-17-17, feebly keeled except the outermost row; (2) tail length comparatively long, TAL/TL ratio 0.30 in females; (3) ventrals 160 (+ 3 preventrals); (4) subcaudals 112; (5) supralabials 9, the fourth to sixth in contact with the eye; (6) infralabials 10, the first 5 touching the first pair of chin shields; (7) preocular 1; (8) postoculars 2; (9) temporals 4, arranged in three rows (1+1+2); (10) maxillary teeth 30, the last 3 enlarged, without diastem; (11) postocular streak presence; (12) background color of dorsal brownish black, a conspicuous, uniform, continuous beige stripe extending from behind the eye to the end of the tail; (13) anterior venter creamish-yellow, gradually fades to the rear, with irregular black blotches in the middle and outer quarter of ventrals, the posterior part almost completely black. The discovery of the new species increases the number of species in the genus Hebius to 51.


Subject(s)
Colubridae , Lizards , Female , Animals , China , Animal Distribution , Tail , Animal Structures , Phylogeny
17.
J Environ Manage ; 344: 118469, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37393878

ABSTRACT

The total de-alkalization treatment of industrial solid waste red mud (RM) has been a worldwide challenge. Removing the insoluble structural alkali fraction from RM is the key to enhancing the sustainable utilization of RM resources. In this paper, supercritical water (SCW) and leaching agents were used for the first time to de-alkalize the Bayer RM and to remove sulfur dioxide (SO2) from flue gas with the de-alkalized RM slurry. The results showed that the optimum alkali removal and Fe leaching rates of RM-CaO-SW slurry were 97.90 ± 0.88% and 82.70 ± 0.95%, respectively. Results confirmed that the SCW technique accelerated the disruption of (Al-O) and (Si-O) bonds and the structural disintegration of aluminosilicate minerals, facilitating the conversion of insoluble structural alkalis to soluble chemical alkalis. The exchangeable Ca2+ displaced Na+ in the remaining insoluble base, producing soluble sodium salts or alkalis. CaO consumed SiO2, which was tightly bound to Fe2O3 in RM, and released Fe2O3, which promoted Fe leaching. RM-SCW showed the best desulfurization performance, which maintained 88.99 ± 0.0020% at 450 min, followed by RM-CaO-SW (450 min, 60.75 ± 6.00%) and RM (180 min, 88.52% ± 0.00068). The neutralization of alkaline components, the redox of metal oxides, and the liquid-phase catalytic oxidation of Fe contributed to the excellent desulfurization performance of the RM-SCW slurry. A promising approach shown in this study is beneficial to RM waste use, SO2 pollution control, and sustainable growth of the aluminum industry.


Subject(s)
Silicon Dioxide , Water , Water/chemistry , Industrial Waste , Aluminum , Oxides
18.
Huan Jing Ke Xue ; 44(6): 3270-3277, 2023 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-37309945

ABSTRACT

The adsorption performances of ammonia nitrogen (NH+4-N) in water by unmodified biochar are ineffective. In this study, nano zero-valent iron-modified biochar (nZVI@BC) was prepared to remove NH+4-N from water. The NH+4-N adsorption characteristics of nZVI@BC were investigated through adsorption batch experiments. The composition and structure characteristics of nZVI@BC were analyzed using scanning electron microscopy, energy spectrum analysis, BET-N2 surface area (SSA), X-ray diffraction, and FTIR spectra to explore the main adsorption mechanism of NH+4-N by nZVI@BC. The results showed that the composite synthesized at the iron to biochar mass ratio of 1:30 (nZVI@BC1/30) performed well in NH+4-N adsorption at 298 K. The maximum adsorption amount of nZVI@BC1/30 at 298 K was remarkably increased by 45.96% and reached 16.60 mg·g-1. The pseudo-second-order model and Langmuir model fitted well with the adsorption process of NH+4-N by nZVI@BC1/30. There was competitive adsorption between coexisting cations and NH+4-N, and the sequence of coexisting cations to the adsorption of NH+4-N by nZVI@BC1/30 was Ca2+> Mg2+> K+> Na+. The adsorption mechanism of NH+4-N by nZVI@BC1/30 could be mainly attributed to ion exchange and hydrogen bonding. In conclusion, nano zero-valent iron-modified biochar can improve the adsorption performance of NH+4-N and enhance the application potential of biochar in the field of nitrogen removal from water.

19.
Cell Death Differ ; 30(7): 1757-1770, 2023 07.
Article in English | MEDLINE | ID: mdl-37173391

ABSTRACT

The ubiquitin-proteasome system governs a wide spectrum of cellular events and offers therapeutic opportunities for pharmacological intervention in cancer treatment. Renal clear cell carcinoma represents the predominant histological subtype and accounts for the majority of cancer death related to kidney malignancies. Through a systematic survey in the association of human ubiquitin-specific proteases with patient prognosis of renal clear cell carcinoma and subsequent phenotypic validation, we uncovered the tumor-promoting role of USP35. Biochemical characterizations confirmed the stabilizing effects of USP35 towards multiple members of the IAP family in an enzymatic activity-dependent manner. USP35 silencing led to reduced expression levels of IAP proteins, which were accompanied with increased cellular apoptosis. Further transcriptomic analysis revealed that USP35 knockdown affected the expression levels of NRF2 downstream transcripts, which were conferred by compromised NRF2 abundance. USP35 functions to maintain NRF2 levels by catalyzing its deubiquitylation and thus antagonizing degradation. NRF2 reduction imposed by USP35 silencing rendered renal clear cell carcinoma cells increased sensitivity to ferroptosis induction. Finally, induced USP35 knockdown markedly attenuated xenograft formation of renal clear cell carcinoma in nude mice. Hence, our findings reveal a number of USP35 substrates and uncover the protecting roles of USP35 against both apoptosis and ferroptosis in renal clear cell carcinoma.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Mice , Humans , Mice, Nude , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Apoptosis , Cell Line, Tumor , Endopeptidases
20.
J Mol Med (Berl) ; 101(5): 527-542, 2023 05.
Article in English | MEDLINE | ID: mdl-37017692

ABSTRACT

Copper (Cu) was recently demonstrated to play a critical role in cellular physiological and biochemical processes, including energy production and maintenance, antioxidation and enzymatic activity, and signal transduction. Antioxidant 1 (ATOX1), a chaperone of Cu previously named human ATX1 homologue (HAH1), has been found to play an indispensable role in maintaining cellular Cu homeostasis, antioxidative stress, and transcriptional regulation. In the past decade, it has also been found to be involved in a variety of diseases, including numerous neurodegenerative diseases, cancers, and metabolic diseases. Recently, increasing evidence has revealed that ATOX1 is involved in the regulation of cell migration, proliferation, autophagy, DNA damage repair (DDR), and death, as well as in organism development and reproduction. This review summarizes recent advances in the research on the diverse physiological and cytological functions of ATOX1 and the underlying mechanisms of its action in human health and diseases. The potential of ATOX1 as a therapeutic target is also discussed. This review aims to pose unanswered questions related to ATOX1 biology and explore the potential use of ATOX1 as a therapeutic target.


Subject(s)
Cation Transport Proteins , Copper , Humans , Copper/chemistry , Copper/metabolism , Antioxidants/therapeutic use , Metallochaperones/chemistry , Metallochaperones/genetics , Metallochaperones/metabolism , Copper Transport Proteins , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Molecular Chaperones/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...