Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(3): e2205697, 2023 01.
Article in English | MEDLINE | ID: mdl-36408922

ABSTRACT

Optical encryption technologies are widely used in information security, whereas the technology with one single optical secret key can be easily cracked. Here, a triple encryption is reported, which hides patterned information in excitation-dependent allochroic materials with long afterglow, enhancing the security level. The allochroic materials are based on a uniaxial co-assembly structure of cellulose nanocrystals (CNCs) and silica. The assembled CNCs present blue emission with quantum yield of 19.8% under 367 nm UV radiation. The blue emission is maintained in the inverse structure when CNCs are calcinated and converted to carbon dots (CDs). The inverse uniaxial-assembly structure improves the CD emission by 6.7 times. The assembly structure can even improve the phosphorescence of CDs, leading to excellent excitation-dependent allochroic properties. Specifically, the materials maintain a cyan long afterglow luminescence at 480 nm after removing 365 nm UV light, whose lifetime is 0.492 s. Changing the excitation wavelength to 254 nm, a UV emission at 343 nm can be obtained, alongside a blue long afterglow luminescence of 420 nm, whose lifetime is 1.574 s. Combining with blue afterglow materials, optical encryption labels are prepared, which hide different patterned information in three scenarios: natural light, UV light, and afterglow luminescence.


Subject(s)
Cellulose , Nanoparticles , Luminescence , Nanoparticles/chemistry , Ultraviolet Rays , Silicon Dioxide/chemistry , Carbon
SELECTION OF CITATIONS
SEARCH DETAIL
...