Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Steroid Biochem Mol Biol ; 236: 106425, 2024 02.
Article in English | MEDLINE | ID: mdl-37984747

ABSTRACT

Sphingosine-1-phosphate (S1P) is biologically active lipid, leading to neuroinflammation and macrophage invasion in central nervous system, plays an important role in the development of multiple sclerosis (MS) model in experimental allergic encephalomyelitis (EAE) rats. Vitamin D is observed to be a key factor in regulating cell S1P levels. We detected vitamin D can alleviate the symptoms of EAE rats, but the exact mechanism is unclear. In PC12 cells, vitamin D can reverse S1P-induced cell death, but the signaling pathway unclear. This study was aimed to investigate S1P regulation mechanism or signaling pathway mediated by vitamin D in EAE and PC12 model. In our experiments, S1P and Sphingosine kinase type 1 (SphK1) mRNA and protein expression in EAE rats group, control group, vitamin D feeding group were detected by HPLC, ELISA, RT-PCR and western blot. PC12 cell death was detected by Propidium (PI) staining. VDR plasmid overexpression and RNA interference, immunofluorescence, real-time cell analysis, protein immunoblotting was used to detect SphK1 transcriptional regulation, cell-substrate attachment quality, the signaling pathway of cell apoptosis and inflammation related gene expression (Bax/Bcl-2, Casepase-3, Il-6, TGF-ß, TNF-α). Our study showed vitamin D can reverse the elevation of S1P level in EAE rats, reduce the severity and shorten the course of EAE. 1,25-(OH) 2D3 coupled with vitamin D receptor (VDR) inhibited SphK1 transcription. 1,25-(OH)2D3 significantly reduced PC12 cell death rate induced by S1P, in addition improved the cell substrate attachment quality. 1,25-(OH) 2D3 can block S1P-induced p-ERK activation and PI3K /Akt signaling pathway reduced Il-6, TGF-ß, TNF-α cytokine release and Bax/Bcl-2, Casepase-3 apoptosis protein expression. On the other hand, immunofluorescence staining showed 1,25-(OH) 2D3 can increase the expression of neuronal perinuclear protein MAP2 in PC12 cells probably protect nerve cells further. In summary, the ameliorative effect of vitamin D was derived from its ability to reduce S1P levels, provides an idea for vitamin D as a combination therapy for disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Phosphotransferases (Alcohol Group Acceptor) , Rats , Animals , Vitamin D/pharmacology , Tumor Necrosis Factor-alpha/genetics , Interleukin-6 , bcl-2-Associated X Protein , Vitamins , Lysophospholipids/metabolism , Sphingosine/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Transforming Growth Factor beta
2.
J Neurochem ; 148(4): 550-560, 2019 02.
Article in English | MEDLINE | ID: mdl-30451284

ABSTRACT

Protein Phosphatase Mg2+ /Mn2+ -Dependent 1K (PPM1K),also named as PP2Cm or branched-chain α-ketoacid dehydrogenase complex phosphatase, is a member of the metal-dependent phosphatase family and an important metabolic regulator. Single nucleotide polymorphisms (SNPs) in PPM1K contributing to protein functional defects have been found to be associated with numerous human diseases, such as cardiovascular disease, maple syrup urine disease, type 2 diabetes, and neurological disease. PPM1K N94K is an identified missense mutant produced by one of the SNPs in the human PPM1K coding sequence. However, the effects of the N94K mutant on its activity and structural property have not been defined. Here, we performed a detailed enzymological study using steady-state kinetics in the presence of pNPP or phospho-peptide substrates and crystallographic analyses of the wild-type and N94K PPM1K. The PPM1K-N94K significantly impaired its Mg2+ -dependent catalytic activity and structural analysis demonstrated that the N94K mutation induced a conformational change in the key residue in coordinating the Mg2+ in the active site. Specifically, three Mg2+ were located in the active site of the PPM1K N94K instead of two Mg2+ in the PPM1K wild type. Therefore, our results provide a structure basis for the metal ion-dependent PPM1K-N94K phosphatase activity.


Subject(s)
Protein Phosphatase 2C/chemistry , Protein Phosphatase 2C/genetics , Biocatalysis , Humans , Mutation , Structure-Activity Relationship
3.
ChemMedChem ; 10(12): 1980-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26553423

ABSTRACT

Slingshot proteins form a small group of dual-specific phosphatases that modulate cytoskeleton dynamics through dephosphorylation of cofilin and Lim kinases (LIMK). Small chemical compounds with Slingshot-inhibiting activities have therapeutic potential against cancers or infectious diseases. However, only a few Slingshot inhibitors have been investigated and reported, and their cellular activities have not been examined. In this study, we identified two rhodanine-scaffold-based para-substituted benzoic acid derivatives as competitive Slingshot inhibitors. The top compound, (Z)-4-((4-((4-oxo-2-thioxo-3-(o-tolyl)thiazolidin-5-ylidene)methyl)phenoxy)methyl)benzoic acid (D3) had an inhibition constant (Ki) of around 4 µm and displayed selectivity over a panel of other phosphatases. Moreover, compound D3 inhibited cell migration and cofilin dephosphorylation after nerve growth factor (NGF) or angiotensin II stimulation. Therefore, our newly identified Slingshot inhibitors provide a starting point for developing Slingshot-targeted therapies.


Subject(s)
Benzoates/chemistry , Benzoic Acid/chemistry , Enzyme Inhibitors/chemistry , Phosphoprotein Phosphatases/antagonists & inhibitors , Rhodanine/analogs & derivatives , Animals , Benzoates/metabolism , Benzoates/pharmacology , Benzoic Acid/metabolism , Benzoic Acid/pharmacology , Cell Movement/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Kinetics , Lim Kinases/metabolism , Nerve Growth Factor/pharmacology , PC12 Cells , Phosphoprotein Phosphatases/metabolism , Phosphorylation/drug effects , Protein Binding , Rats , Rhodanine/chemistry , Rhodanine/metabolism , Rhodanine/pharmacology , Structure-Activity Relationship
4.
Cell Res ; 24(9): 1067-90, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25081058

ABSTRACT

The tyrosine phosphorylation barcode encoded in C-terminus of HER2 and its ubiquitination regulate diverse HER2 functions. PTPN18 was reported as a HER2 phosphatase; however, the exact mechanism by which it defines HER2 signaling is not fully understood. Here, we demonstrate that PTPN18 regulates HER2-mediated cellular functions through defining both its phosphorylation and ubiquitination barcodes. Enzymologic characterization and three crystal structures of PTPN18 in complex with HER2 phospho-peptides revealed the molecular basis for the recognition between PTPN18 and specific HER2 phosphorylation sites, which assumes two distinct conformations. Unique structural properties of PTPN18 contribute to the regulation of sub-cellular phosphorylation networks downstream of HER2, which are required for inhibition of HER2-mediated cell growth and migration. Whereas the catalytic domain of PTPN18 blocks lysosomal routing and delays the degradation of HER2 by dephosphorylation of HER2 on pY(1112), the PEST domain of PTPN18 promotes K48-linked HER2 ubiquitination and its rapid destruction via the proteasome pathway and an HER2 negative feedback loop. In agreement with the negative regulatory role of PTPN18 in HER2 signaling, the HER2/PTPN18 ratio was correlated with breast cancer stage. Taken together, our study presents a structural basis for selective HER2 dephosphorylation, a previously uncharacterized mechanism for HER2 degradation and a novel function for the PTPN18 PEST domain. The new regulatory role of the PEST domain in the ubiquitination pathway will broaden our understanding of the functions of other important PEST domain-containing phosphatases, such as LYP and PTPN12.


Subject(s)
Catalytic Domain , Protein Tyrosine Phosphatases, Non-Receptor/chemistry , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Receptor, ErbB-2/metabolism , Ubiquitination , Amino Acid Motifs , Amino Acid Sequence , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Crystallography, X-Ray , Female , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Lysine/metabolism , Lysosomes/metabolism , Models, Biological , Molecular Sequence Data , Neoplasm Staging , Peptides/metabolism , Phosphorylation , Phosphotyrosine/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Signal Transduction , Structure-Activity Relationship , Substrate Specificity , beta-Transducin Repeat-Containing Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...