Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 164: 107246, 2023 09.
Article in English | MEDLINE | ID: mdl-37487383

ABSTRACT

RNA secondary structure is essential for predicting the tertiary structure and understanding RNA function. Recent research tends to stack numerous modules to design large deep-learning models. This can increase the accuracy to more than 70%, as well as significant training costs and prediction efficiency. We proposed a model with three feature extractors called GCNfold. Structure Extractor utilizes a three-layer Graph Convolutional Network (GCN) to mine the structural information of RNA, such as stems, hairpin, and internal loops. Structure and Sequence Fusion embeds structural information into sequences with Transformer Encoders. Long-distance Dependency Extractor captures long-range pairwise relationships by UNet. The experiments indicate that GCNfold has a small number of parameters, a fast inference speed, and a high accuracy among all models with over 80% accuracy. Additionally, GCNfold-Small takes only 90ms to infer an RNA secondary structure and can achieve close to 90% accuracy on average. The GCNfold code is available on Github https://github.com/EnbinYang/GCNfold.


Subject(s)
RNA , Protein Structure, Secondary , RNA/genetics
2.
BMC Infect Dis ; 22(1): 490, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35606725

ABSTRACT

BACKGROUND: Tuberculosis (TB) is the respiratory infectious disease with the highest incidence in China. We aim to design a series of forecasting models and find the factors that affect the incidence of TB, thereby improving the accuracy of the incidence prediction. RESULTS: In this paper, we developed a new interpretable prediction system based on the multivariate multi-step Long Short-Term Memory (LSTM) model and SHapley Additive exPlanation (SHAP) method. Four accuracy measures are introduced into the system: Root Mean Square Error, Mean Absolute Error, Mean Absolute Percentage Error, and symmetric Mean Absolute Percentage Error. The Autoregressive Integrated Moving Average (ARIMA) model and seasonal ARIMA model are established. The multi-step ARIMA-LSTM model is proposed for the first time to examine the performance of each model in the short, medium, and long term, respectively. Compared with the ARIMA model, each error of the multivariate 2-step LSTM model is reduced by 12.92%, 15.94%, 15.97%, and 14.81% in the short term. The 3-step ARIMA-LSTM model achieved excellent performance, with each error decreased to 15.19%, 33.14%, 36.79%, and 29.76% in the medium and long term. We provide the local and global explanation of the multivariate single-step LSTM model in the field of incidence prediction, pioneering. CONCLUSIONS: The multivariate 2-step LSTM model is suitable for short-term prediction and obtained a similar performance as previous studies. The 3-step ARIMA-LSTM model is appropriate for medium-to-long-term prediction and outperforms these models. The SHAP results indicate that the five most crucial features are maximum temperature, average relative humidity, local financial budget, monthly sunshine percentage, and sunshine hours.


Subject(s)
Tuberculosis , China/epidemiology , Forecasting , Humans , Incidence , Models, Statistical , Temperature , Tuberculosis/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...