Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
World J Clin Cases ; 12(18): 3497-3504, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983434

ABSTRACT

BACKGROUND: An increasing number of studies have begun to discuss the relationship between gut microbiota and diseases, yet there is currently a lack of corresponding articles describing the association between gut microbiota and hepatocellular carcinoma (HCC) and biliary tract cancer (BTC). This study aims to explore the relationship between them using Mendelian randomization (MR) analysis method. AIM: To assess the relationship between gut microbiota and HCC and BTC. METHODS: We obtained Genome-wide association study (GWAS) data for the gut microbiome from the intestinal microbiota genomic library (MiBioGen, https://mibiogen.gcc.rug.nl/). Additionally, we accessed data pertaining to HCC and BTC from the IEU open GWAS platform (https://gwas.mrcieu.ac.uk/). Our analysis employed fundamental instrumental variable analysis methods, including inverse-variance weighted, MR and Egger. To ensure the dependability of the results, we subjected the results to tests for multiple biases and heterogeneity. RESULTS: During our investigation, we discovered 11 gut microbiota linked to an increased risk to BTC and HCC. The former included the genus Eubacterium hallii group (P = 0.017), Candidatus Soleaferrea (P = 0.034), Flavonifractor (P = 0.021), Lachnospiraceae FCS020 (P = 0.034), the order Victivallales (P = 0.018), and the class Lentisphaeria (P = 0.0.18). The latter included the genus Desulfovibrio (P = 0.042), Oscillibacter (P = 0.023), the family Coriobacteriaceae (P = 0.048), the order Coriobacteriales (P = 0.048), and the class Coriobacteriia (P = 0.048). Furthermore, in BTC, we observed 2 protective gut microbiota namely the genus Dorea (P = 0.041) and Lachnospiraceae ND3007 group (P = 0.045). All results showed no evidence of multiplicity or heterogeneity. CONCLUSION: This study explores a causal link between gut microbiota and HCC and BTC. These insights may enhance the mechanistic knowledge of microbiota-related HCC and BTC pathways, potentially informing therapeutic strategies.

2.
Phytother Res ; 33(9): 2347-2359, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31273855

ABSTRACT

As yet, there was no effective pharmacological therapy approved for non-alcoholic fatty liver disease (NAFLD). Here, we aimed to evaluate the therapeutic potential of puerarin against NAFLD and explored the underlying mechanisms. C57BL/6J mice were fed with a high-fat high-sucrose (HFHS) diet with or without puerarin coadministration intragastrically. The levels of hepatocellular injury, steatosis, fibrosis, and mitochondrial and metabolism alteration were detected. First, puerarin ameliorated histopathologic abnormalities due to HFHS. We observed a marked increase in hepatic lipid content, inflammation, and fibrosis level, which were attenuated by puerarin. Possible mechanisms were related to puerarin-mediated activation of PI3K/AKT pathway and further improvement in fatty acid metabolism. Puerarin restored the NAD+ content and beneficially affected the hepatic mitochondrial function, which attenuated HFHS-induced steatosis and metabolic disturbances. Finally, hepatic PARP-1 was activated due to excessive fat intake. Puerarin attenuated the PARP-1 expression in HFHS-fed mice, and PJ34, the PARP inhibitor, could mimic these protections of puerarin. However, pharmacological inhibition of PI3K disabled the protection of puerarin or PJ34 toward NAD+ refilling and mitochondrial homeostasis. In conclusion, our findings indicated that puerarin could be a promising and practical therapeutic strategy in NAFLD through modulating PARP-1/PI3K/AKT signaling pathway and further facilitating mitochondrial function.


Subject(s)
Diet, High-Fat/adverse effects , Isoflavones/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Sucrose/adverse effects , Vasodilator Agents/therapeutic use , Animals , Humans , Isoflavones/pharmacology , Male , Mice , Mice, Inbred C57BL , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Vasodilator Agents/pharmacology
3.
Oncotarget ; 8(51): 88918-88933, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29179487

ABSTRACT

Poly (ADP-ribose) polymerase 1 (PARP-1) is a crucial contributor to exacerbate ischemia and reperfusion (IR) injury and cancer process. However, there is little research into whether PARP-1 affects the hepatocellular carcinoma (HCC) recurrence after liver transplantation. In this study, we investigated the influence of PARP-1 on hepatic neutrophil mobilizing and phenotype shifting which may lead to HCC recurrence after liver transplantation. We found that rats received the grafts with warm ischemic injury had higher risk of HCC recurrence, which was markedly prevented by pharmacological inhibition of PARP-1 after liver transplantation. In mouse models, the up-regulation of PARP-1 was closely related to the greater tumor burden and increased hepatic susceptibility to recurrence after IR injury. The reason was that high hepatic PARP-1 led to increased liver CXCL1 levels, which in turn promoted recruitment of neutrophils. Both blocking CXCL1/CXCR2 signaling pathway and depleting neutrophils decreased tumor burden. Moreover, these infiltrating neutrophils were programmed to a proangiogenic phenotype under the influence of PARP-1 in vivo after hepatic IR injury. In conclusion, IR-induced PARP-1 up-regulation increased the hepatic recruitment of neutrophils through regulation of CXCL1/CXCR2 signaling and polarized hepatic neutrophils to proangiogenic phenotype, which further promoted HCC recurrence after transplantation.

SELECTION OF CITATIONS
SEARCH DETAIL
...